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a b s t r a c t 

The Szeged index of a graph G is defined as Sz(G ) = 

∑ 

e = u v ∈ E n u (e ) n v (e ) , where n u ( e ) and 

n v (e ) are, respectively, the number of vertices of G lying closer to vertex u than to vertex 

v and the number of vertices of G lying closer to vertex v than to vertex u . A cactus is a 

graph in which any two cycles have at most one common vertex. Let C(n, k ) denote the 

class of all cacti with order n and k cycles, and C t n denote the class of all cacti with order 

n and t pendant vertices. In this paper, a lower bound of the Szeged index for cacti of 

order n with k cycles is determined, and all the graphs that achieve the lower bound are 

identified. As well, the unique graph in C t n with minimum Szeged index is characterized. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper we are concerned with simple finite graphs. Undefined notation and terminology can be found in [2] . Let 

G be a connected graph with vertex set V ( G ) and edge set E ( G ). For v ∈ V (G ) , let N G (v ) (or N(v ) for short) denote the set of 

all the adjacent vertices of v in G and d G (v ) = | N G (v ) | , the degree of v in G. Call u a pendant vertex in G , if d G (u ) = 1 and 

call u v a pendant edge in G , if d G (u ) = 1 or d G (v ) = 1 . Denote by P n , S n , C n and K n the path, star, cycle and complete graph 

on n vertices, respectively. One of the oldest and well-studied topological indices is the Wiener index , defined as the sum of 

distances over all unordered vertex pairs in a graph G [34] and denoted by 

W (G ) = 

∑ 

{ u, v }⊂V 

d G (u, v ) 

where d G (u, v ) denotes the distance between u and v in G . 

This topological index has been extensively studied in the mathematical literature, many papers have contributed to 

the Wiener index and these studies mainly focused on determining the lower and upper bounds on Wiener index; see, 

e.g., [7,9,11,14,15,22,24,25,31,33,37] . Also in [34] , another topological index was also introduced by Wiener, called the Wiener 

polarity index W p ( G ), which is defined as the number of unordered pairs of vertices that are at distance 3 in G . For some 

properties and applications of the Wiener polarity index one may be referred to those in [3,20,26] . 

Let e = u v be an edge of G , and define three sets as follows: 

N u (e ) = { w ∈ V : d(u, w ) < d(v , w ) } , N v (e ) = { w ∈ V : d(v , w ) < d(u, w ) } , 
N 0 (e ) = { w ∈ V : d(u, w ) = d(v , w ) } . 

Thus, [ N u (e ) , N v (e ) , N 0 (e )] is a partition of the vertices of G with respect to e . The number of vertices of N u (e ) , N v (e ) and 

N 0 ( e ) are denoted by n u (e ) , n v (e ) and n 0 ( e ), respectively. A long time known property of the Wiener index is the formula 
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Fig. 1. The graph C 0 ( n , k ). 

Fig. 2. G and G ′ in Lemma 2.1 . 

[15,34] : 

W (G ) = 

∑ 

e = u v ∈ E 
n u (e ) n v (e ) , 

which is applicable for trees. Using the above formula, Gutman [13] introduced a graph invariant named the Szeged index as 

an extension of the Wiener index and defined it by 

Sz(G ) = 

∑ 

e = u v ∈ E 
n u (e ) n v (e ) . 

Randi ́c [31] observed that the Szeged index does not take into account the contributions of the vertices at equal distances 

from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named the revised 

Szeged index . The revised Szeged index of a connected graph G is defined as 

Sz ∗(G ) = 

∑ 

e = u v ∈ E 

(
n u (e ) + 

n 0 (e ) 

2 

)(
n v (e ) + 

n 0 (e ) 

2 

)
. 

There are several results on the difference (resp. quotient) between the Szeged index (resp. revised Szeged index) and 

Wiener index; see, e.g., [4,5,9,10,17–19,27,28,36] . For some properties and applications of the Szeged index and the revised 

Szeged index one may be referred to those in [1,6,12,16,21,23,29,30,32,35] . 

In [8] , Dobrynin proved that K � n 
2 
� , � n 

2 
	 is the unique graph with maximal Szeged index in the set of all connected graphs 

with n vertices. In [13] , Gutman characterized the extremal trees and unicyclic graphs that have minimum (resp. maxi- 

mum) Szeged index, respectively. In [32] , Simi ́c, Gutman and Balti ́c identified those graphs whose Szeged index is extremal 

(minimal and maximal) among bicyclic and tricyclic graphs. 

A cactus is a graph that any block is either a cut edge or a cycle. It is also a graph in which any two cycles have at 

most one common vertex. A cycle in a cactus is called end-block if all but one vertex of this cycle have degree 2. A cut edge 

is said to be nontrivial if it is not a pendent edge. If all the cycles in a cactus have exactly one common vertex, then they 

form a bundle. Let C(n, k ) be the class of all cacti of order n with k cycles and C t n be the class of all cacti of order n with 

t pendant vertices. In this paper, we give a lower bound of the Szeged index for cacti of order n with k cycles, and also 

characterize those graphs that achieve the lower bound. We also determine the unique graph in C t n with minimum Szeged 

index. Let C 0 (n, k ) ∈ C(n, k ) be a bundle of k triangles with n − 2 k − 1 pendant vertices attached at the common vertex; see 

Fig. 1 . 

2. Preliminaries 

In this section, we give some preliminary results which will be used in the subsequent sections. 

Lemma 2.1. Let G be a graph with a cut edge e ′ = w 1 w 2 , and G 

′ be the graph obtained from G by contracting the edge e ′ and 

adding a pendant edge attaching at the contracting vertex; see Fig. 2 . If d G (w i ) ≥ 2 for i = 1 , 2 , we have that Sz ( G 

′ ) < Sz ( G ) . 

Proof. Let G 1 and G 2 be the component of G − w 1 w 2 that contains w 1 and w 2 , respectively. One can see that for any e = 

xy ∈ E(G 1 ) , if w 1 ∈ N x (e ) , N y (e ) or N 0 ( e ) respectively, then V ( G 2 ) ⊆ N x ( e ), N y ( e ) or N 0 ( e ) respectively. Similarly, for any e = 
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