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a b s t r a c t 

The compensated quotient-difference ( Compqd ) algorithm is proposed along with some 

applications. The main motivation is based on the fact that the standard quotient- 

difference ( qd ) algorithm can be numerically unstable. The Compqd algorithm is obtained 

by applying error-free transformations to improve the traditional qd algorithm. We study 

in detail the error analysis of the qd and Compqd algorithms and we introduce new con- 

dition numbers so that the relative forward rounding error bounds can be derived directly. 

Our numerical experiments illustrate that the Compqd algorithm is much more accurate 

than the qd algorithm, relegating the influence of the condition numbers up to second or- 

der in the rounding unit of the computer. Three applications of the new algorithm in the 

obtention of continued fractions and in pole and zero detection are shown. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The quotient-difference ( qd ) algorithm was proposed by Rutishauser from previous works of Hadamard [1] , Aitken [2,3] , 

and Lanczos [4] (for details see [5] ). This algorithm is highly related to the Padé approximation [6–8] techniques. The qd 
algorithm, and its variants, have numerous applications. For instance, it can be used to obtain the continuous fraction rep- 

resentation of meromorphic functions given by its power series development [7–9] . It is also related with complex analysis, 

as it provides a direct method to locate poles of complex functions [9,10] and zeros of polynomials [10,11] . Besides, in eigen- 

value computation, the progressive qd algorithm [10] has a relevant role as it can be interpreted as the LR transform 

for a tridiagonal matrix [12–14] . 

Unfortunately, in finite precision arithmetic, the quotient-difference algorithm has been shown in experiments to be nu- 

merically unstable. It is overly sensitive to rounding errors. As a consequence, high-precision arithmetic or exact arithmetic 
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are recommended to overcome such a problem [15] . In order to increase the accuracy and stability of algorithms for ill- 

conditioned problems, several researchers studied their corresponding accurate compensated algorithms by applying error- 

free transformations [16–18] which can yield, in most circumstances, a full precision accuracy in standard precision. For 

instance, to evaluate ill-conditioned polynomials with floating-point coefficients, Graillat et al. [19–21] proposed a compen- 

sated Horner algorithm to evaluate polynomials in monomial basis; Jiang et al. [22–24] presented compensated de-Casteljau 

and Clenshaw algorithms to evaluate polynomials in Bernstein, Chebyshev and Legendre basis, respectively. 

In this paper, we first perform a complete analysis of the stability of the quotient-difference algorithm by providing for- 

ward rounding error bounds and we introduce condition numbers adapted to the problem that permit to give a simple 

error bound that helps to locate the instability problems. The bounds shown in this paper provide a theoretical statement 

of the numerical simulations in literatu re. To overcome, or at least, to delay the appearance of instability problems in stan- 

dard precision, we introduce a new more accurate algorithm, the compensated quotient-difference algorithm. The proposed 

algorithm is based on error-free transformations. To obtain the compensated quotient-difference algorithm we consider, es- 

pecially, the division operation in each inner loop which has never been used in previous works of compensated algorithms. 

Again, we perform a complete analysis of the stability and now, from the forward rounding error bounds, we observe that 

the condition numbers are multiplied by the square of the rounding unit, instead of the rounding unit. This result states 

that the proposed compensated quotient-difference algorithm is much more stable than the standard quotient-difference 

algorithm in working precision. 

The paper is organized as follows. In Section 2 , we introduce the classical qd algorithm, some basic notations about 

floating-point arithmetic and error-free transformations. Section 3 presents the error analysis of the qd algorithm and its 

condition numbers. In Section 4 , the proposed new compensated qd algorithm, Compqd , is provided. Section 5 presents 

the forward rounding error bounds of the Compqd algorithm. Finally, in Section 6 , we give several numerical experiments 

together with three practical applications to illustrate the efficiency, accuracy and stability of the new Compqd algorithm. 

In the Appendices all the algorithms are detailed, and besides, a new compensated version of the progressive form of the qd 
scheme ( Compproqd algorithm) is given. 

2. Preliminaries 

In this section, we review the classical qd algorithm ( Section 2.1 ). In order to perform the detailed error analysis of the 

algorithms, we give some basic notations ( Section 2.2 ) and we present the error-free transformations ( Section 2.3 ). 

2.1. The quotient-difference algorithm 

Along this paper, quotient-difference is called qd for short and we assume that the conditions for the existence of the 

qd scheme (also known as the qd table [25] ) are satisfied. 

Considering the formal power series 

f (z) = c 0 + c 1 z + c 2 z 
2 + · · · ≡

∞ ∑ 

k =0 

c k z 
k , (1) 

where c i ∈ R , we define its double sequence of Hankel determinants by 
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A remarkable connection among Hankel determinants [7] is given by 
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then the previous relationship (2) can be interpreted as the following addition rhombus rule 
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, (4) 

and, considering the definition (3) , q (n ) 
m 

and e (n ) 
m 

give the product rhombus rule 

q (n +1) 
m 

e (n +1) 
m 

= q (n ) 
m +1 

e (n ) 
m 

. (5) 

Hence, both rhombus relations, (4) and (5) , give rise to the classical qd algorithm: 
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