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a b s t r a c t 

In this paper, a finite-difference lattice Boltzmann (LB) model for nonlinear isotropic and 

anisotropic convection-diffusion equations is proposed. In this model, the equilibrium dis- 

tribution function is delicately designed in order to recover the convection-diffusion equa- 

tion exactly. Different from the standard LB model, the temporal and spatial steps in this 

model are decoupled such that it is convenient to study convection-diffusion problem 

with the non-uniform grid. In addition, it also preserves the advantage of standard LB 

model that the complex-valued convection-diffusion equation can be solved directly. The 

von Neumann stability analysis is conducted to discuss the stability region which can be 

used to determine the free parameters appeared in the model. To test the performance 

of the model, a series of numerical simulations of some classical problems, including the 

diffusion equation, the nonlinear heat conduction equation, the Sine-Gordon equation, the 

Gaussian hill problem, the Burgers–Fisher equation, and the nonlinear Schrödinger equa- 

tion, have also been carried out. The results show that the present model has a second- 

order convergence rate in space, and generally it is also more accurate than the standard 

LB model. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The convection-diffusion equation (CDE), as one kind of partial differential equation, has attracted considerable attention 

for its important role in the study of the heat and mass transfer [1] . To well understand the physical phenomena or intrinsic 

mechanism of the complicated dynamical system governed by the CDE, the best way is to derive its exact solution, while 

it is usually difficult or even impossible, especially for nonlinear CDE. With the development of computer technology, the 

numerical simulation, as an alternative to analytical approach, plays a significant role in solving nonlinear CDEs, and many 

researchers have made great efforts to develop efficient numerical approaches, such as finite-difference method [2] , finite- 

element method [3] and finite-volume method [4] . 

The lattice Boltzmann (LB) method, as a mesoscopic approach, has gained a great success in the study of complex 

hydrodynamic problems [5] , including multiphase flow [6–8] , flow and mass transport in porous media [9–11] , and blood 
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flow [12] . On the other hand, the LB method, as a numerical solver, has also been extended to study CDEs, and some LB 

models for CDE were also developed in the past two decades [13–23] . For instance, Dawson et al. [13] first proposed an 

LB model for the isotropic CDE with a source term, and a linear equilibrium distribution function was adopted. Yu and Shi 

[16] also established an LB model for isotropic CDE with time delay while a quadratic equilibrium distribution was used. Shi 

et al. [17] also considered the problem of isotropic CDE with a source term, but mainly focused on the schemes of source 

term in LB model. Recently, to solve the anisotropic CDE, Yoshida and Nagaoka [23] developed a multiple-relaxation-time 

LB model, and also presented a discussion on the boundary condition. However, through the Chapman–Enskog analysis, we 

can find that the CDE can only be recovered exactly from some LB models under certain assumptions, while these assump- 

tions may not be satisfied in practice and also influence the accuracy of LB model [24,25] . To eliminate the additional terms 

appeared in recovered CDE, some improved models have been developed by some researchers. For instance, Chopard et al. 

[24] developed a new LB model, in which a source term related to the time-derivative or spacial derivative is added in the 

evolution equation. Through introducing an auxiliary moment, Shi and Guo [25] proposed another LB model for nonlinear 

CDE, which can be used to solve isotropic, anisotropic and complex CDEs. Recently, Chai et al. [26] developed a multiple- 

relaxation-time LB model for general nonlinear CDE. However, the intrinsic coupling of the spatial and temporal steps is 

still existing in the above LB models, which brings a great limitation on the applications of the standard LB method (SLBM) 

[13,14,16–26] . 

To overcome the above limitation of the SLBM, some approaches have been developed. The first one is to adopt an in- 

terpolation method to evaluate the value of the distribution function at the non-uniformly distributed lattice points [27,28] . 

In this method, the collision and boundary conditions are still locally implemented on the lattice points, but compared 

to the SLBM, the interpolation procedure would make the algorithm more complicated, and causes unphysically numeri- 

cal viscosities, as pointed out in Ref. [29] . The second one is to use the rectangular LB method [15,21,30] , in which the 

direction-dependent weight coefficients in the equilibrium function are used to satisfy the moment conditions. Actually, 

van der Sman and Ernst [15] have compared the rectangular LB model with some traditional methods (finite-difference and 

finite-element methods), and found that it has a comparable performance with these traditional approaches. However, to re- 

cover the macroscopic CDE, some assumptions are adopted in rectangular LB model. The last one is to apply finite-difference 

LB method, in which some standard finite-difference schemes are used to discretize the continuous Boltzmann equation 

[31–34] . Compared to above two approaches, this method is much easier to implement. For this reason, in this work, we 

will develop a finite-difference LB model (FDLBM) for nonlinear CDEs following the idea in Ref. [31] . 

The rest of the paper is organized as follows. In Section 2 , we present an FDLBM for nonlinear CDE, and show that 

through constructing the proper equilibrium distribution function and source term, the nonlinear CDE can be recovered 

correctly from the present model. In Section 3 , the version of the FDLBM for complex nonlinear CDE is also presented. 

In Section 4 , the stability of present FDLBM is analyzed with the von Neumann analysis [35] , and is validated through 

performing a numerical simulation. In Section 5 , a large number of simulations of some nonlinear CDEs are performed to 

test the present model, and finally, a brief summary is given in Section 6 . 

2. Finite-difference lattice Boltzmann model 

The n -dimensional CDE with a source term can be written as 

∂ t φ + ∇ · B (φ) = ∇ · [ α∇ · D (φ) ] + F ( x , t) , (1) 

where ∇ is the spatial gradient operator, φ = φ( x , t) is an unknown scaler function, α = α( x , t) is the diffusion coefficient. 

B (φ) and D (φ) are the convection and diffusion terms, and F ( x , t) is the source term. 

Following the idea in the previous work [25,31] , the present FDLBM is developed based on the D n Q b model, and the 

evolution equation can be written as 

f i ( x , t + �t) − f i ( x , t) + �t c i · � = −�tθ

τ
( f i ( x , t + �t) − f eq 

i 
( x , t + �t)) − �t(1 − θ ) 

τ
( f i ( x , t) − f eq 

i 
( x , t)) 

+ �t F i ( x , t ) + 

�t 2 

2 

∂ t F i ( x , t ) , i = 0 , 1 , . . . , b − 1 , (2) 

where { c i , i = 0 , . . . , b − 1 } is the set of discrete velocity directions, �t is the time step, � = ∇ f i ( x , t) , τ is the dimensionless 

relaxation time, θ ∈ [0, 1] is a parameter to determine whether the evolution equation is explicit or implicit. f 
eq 
i 

( x , t) is the 

equilibrium distribution function, and F i ( x , t) is the distribution function of the source term. Similar to the SLBM [25] , the 

equilibrium distribution function is still defined as 

f eq 
i 

= ω i 

[
φ + 

c i · B (φ) 

c 2 s 

+ 

( C (φ) − c 2 s φI ) : ( c i c i − c 2 s I ) 

2 c 4 s 

]
, (3) 

where ω i is the weight coefficient, c s is the sound speed related to lattice velocity, and I is the unit tensor. 

C (φ) = C 0 (φ) + c 2 s D (φ) is the second-order moment of f 
eq 
i 

, and C 0 (φ) is an auxiliary-moment, which can be used to remove 

some additional terms in the recovered CDE. 

Here we only take the D2Q9 lattice model as an example, and present a detailed Chapman–Enskog analysis on how to 

derive the CDE from the present model. In the D2Q9 lattice model, ω 0 = 4 / 9 , ω 1 ∼4 = 1 / 9 , ω 5 ∼8 = 1 / 36 , { c i , i = 0 , . . . , 8 } = 



Download English Version:

https://daneshyari.com/en/article/5775817

Download Persian Version:

https://daneshyari.com/article/5775817

Daneshyari.com

https://daneshyari.com/en/article/5775817
https://daneshyari.com/article/5775817
https://daneshyari.com

