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a b s t r a c t 

The present paper deals with nonoscillation problem for the second-order linear difference 

equation 

c n x n +1 + c n −1 x n −1 = b n x n , n = 1 , 2 , . . . , 

where { b n } and { c n } are positive sequences. All nontrivial solutions of this equation are 

nonoscillatory if and only if the Riccati-type difference equation 

q n z n + 

1 

z n −1 

= 1 

has an eventually positive solution, where q n = c 2 n / (b n b n +1 ) . Our nonoscillation theorems 

are proved by using this equivalence relation. In particular, it is focusing on the relation of 

the triple (q 3 k −2 , q 3 k −1 , q 3 k ) for each k ∈ N . Our results can also be applied to not only the 

case that { b n } and { c n } are periodic but also the case that { b n } or { c n } is non-periodic. To 

compare the obtained results with previous works, we give some concrete examples and 

those simulations. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The Riccati transformation is a very important tool for studying nonoscillation problem of second-order linear difference 

equations as well as ordinary differential equations. It is known that there are several types of Riccati transformations. For 

example, Hooker et al. [15] , Hooker and Patula [16] and Kwong et al. [19] have presented three kinds of Riccati transforma- 

tions for the second-order linear difference equation 

c n x n +1 + c n −1 x n −1 = b n x n , n = 1 , 2 , . . . , (1.1) 

where { b n } and { c n } are sequences satisfying b n > 0 for n ∈ N and c n > 0 for n ∈ N ∪ { 0 } , respectively. Those Riccati trans- 

formations are expressed by w n = x n +1 /x n , y n = c n x n +1 /x n and z n = b n +1 x n +1 / (c n x n ) . Here, we assume that there exists an 

M ∈ N such that x n > 0 for n ≥ M . The transformations lead to the first-order non-linear difference equations 

c n w n + 

c n −1 

w n −1 

= b n , 

y n + 

c 2 n −1 

y n −1 

= b n 
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and 

q n z n + 

1 

z n −1 

= 1 , q n = 

c 2 n 

b n b n +1 

(1.2) 

with n = M + 1 , M + 2 , . . . , respectively (see also the books [1 , Chapter 6], [9 , Chapter 7]) . Although the transformation 

z n = 

b n +1 x n +1 

c n x n 

is the most complicated one out of those three, Eq. (1.2) is easiest to use because the coefficient of (1.2) is only one. 

It is clear that Eq. (1.1) has the trivial solution { x n }; that is, x n = 0 for n ≥ 0. The others are called non-trivial solutions. A 

non-trivial solution of (1.1) is said to be oscillatory if, for every N ∈ N there exists an n ≥ N such that x n x n +1 ≤ 0 . Otherwise, 

it is said to be nonoscillatory . Hence, a nonoscillatory solution { x n } of (1.1) satisfies that x n > 0 for n sufficiently large or x n 
< 0 for n sufficiently large. Since Eq. (1.1) is linear, { x n } is a solution of (1.1) if and only if {−x n } is also a solution of (1.1) . 

Hence, it is sufficient to consider that a nonoscillatory solution { x n } of (1.1) continues being positive for all large n . 

As known well, Sturm’s separation theorem holds for Eq. (1.1) . About the proof of Sturm’s separation theorem concerning 

linear difference equations, see [9, pp. 321–322] for example. From Sturm’s separation theorem it follows that if one non- 

trivial solution of (1.1) is nonoscillatory, then all its non-trivial solutions are nonoscillatory. Hence, oscillatory solutions and 

nonoscillatory solutions do not coexist in Eq. (1.1) . 

Using Eq. (1.2) equivalent to (1.1) , Hooker et al. [15] have proved the following results. 

Theorem A. If q n ≥ 1 / (4 − ε ) for some ε > 0 and for all sufficiently large n , then all non-trivial solutions of (1.1) are oscillatory. 

Theorem B. If q n ≤ 1/4 for all sufficiently large n , then all non-trivial solutions of (1.1) are nonoscillatory. 

As can be seen from Theorems A and B , the constant 1/4 is a critical value that divides oscillation and nonoscillation of 

solutions of (1.1) . Such a value is called an oscillation constant . It seems to be appropriate that the constant 1/4 appears in 

Theorems A and B , because it often becomes the oscillation constant for some ordinary differential equations. For example, 

it is well-known that all non-trivial solutions of the Euler differential equation 

x ′′ + 

γ

t 2 
x = 0 

are nonoscillatory if and only if γ ≤ 1/4 (for example, see [14,18,21,26] ). In this sense, it is not exaggeration even if we 

say that Theorems A and B have similarity between the results of ordinary differential equations. After that, Hooker et al. 

[16] and Kwong et al. [19] improved the sufficient condition was given in Theorem A which guarantees that all nontrivial 

solutions of (1.1) are oscillatory. 

Equation (1.1) can be rewritten as the self-adjoint difference equation 

Δ(c n −1 Δx n −1 ) + p n x n = 0 , (1.3) 

where Δ is the forward difference operator Δx n = x n +1 − x n and 

p n = c n −1 + c n − b n 

for n ∈ N . The oscillation and nonoscillation of (1.3) and more generalized equations have been considered extensively by 

many authors. For example, see [1–5,9,12,17] and the references cited therein. Chen and Erbe [4] discussed the oscillation 

and nonoscillation properties of (1.3) and obtained oscillation and nonoscillation criteria by using Riccati techniques. Their 

main assumptions were 

lim sup 

n →∞ 

1 

n 

n ∑ 

k =1 

k ∑ 

j=1 

p j > −∞ (1.4) 

and others. Since the beginning of this century, oscillation and nonoscillation criteria are now being actively reported for 

the self-adjoint difference equation 

Δ(c n −1 �(Δx n −1 )) + p n �(x n ) = 0 , (1.5) 

which is a generalization of (1.3) . Here, �( z ) is a real-valued nonlinear function defined by 

�(z) = 

{| z| p−2 z if z 	 = 0 , 

0 if z = 0 

for z ∈ R with p > 1 a fixed real number. For example, see [7,10,11,13,20,22–24,27] . Eq. (1.5) is often called a half-linear 

difference equation. Most of these results emphasized similarity of difference equations (1.3) and (1.5) and the differential 

equation 

(c(t) x ′ ) ′ + p(t) x = 0 

and its generalization 

(c(t)�(x ′ )) ′ + p(t)�(x ) = 0 , 



Download	English	Version:

https://daneshyari.com/en/article/5775835

Download	Persian	Version:

https://daneshyari.com/article/5775835

Daneshyari.com

https://daneshyari.com/en/article/5775835
https://daneshyari.com/article/5775835
https://daneshyari.com/

