Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation, II

Jitsuro Sugie

Department of Mathematics, Shimane University, Matsue 690-8504, Japan

a r t i c l e i n f o

MSC: 39A06 39A10 39A21

Keywords: Linear difference equations Nonoscillation Riccati transformation Sturm's separation theorem

A B S T R A C T

The present paper deals with nonoscillation problem for the second-order linear difference equation

 $c_n x_{n+1} + c_{n-1} x_{n-1} = b_n x_n, \qquad n = 1, 2, \ldots,$

where ${b_n}$ and ${c_n}$ are positive sequences. All nontrivial solutions of this equation are nonoscillatory if and only if the Riccati-type difference equation

$$
q_n z_n + \frac{1}{z_{n-1}} = 1
$$

has an eventually positive solution, where $q_n = c_n^2/(b_n b_{n+1})$. Our nonoscillation theorems are proved by using this equivalence relation. In particular, it is focusing on the relation of the triple $(q_{3k-2}, q_{3k-1}, q_{3k})$ for each $k \in \mathbb{N}$. Our results can also be applied to not only the case that ${b_n}$ and ${c_n}$ are periodic but also the case that ${b_n}$ or ${c_n}$ is non-periodic. To compare the obtained results with previous works, we give some concrete examples and those simulations.

© 2017 Elsevier Inc. All rights reserved.

贾

CrossMark

1. Introduction

The Riccati transformation is a very important tool for studying nonoscillation problem of second-order linear difference equations as well as ordinary differential equations. It is known that there are several types of Riccati transformations. For example, Hooker et al. [\[15\],](#page--1-0) Hooker and Patula [\[16\]](#page--1-0) and Kwong et al. [\[19\]](#page--1-0) have presented three kinds of Riccati transformations for the second-order linear difference equation

 $c_n x_{n+1} + c_{n-1} x_{n-1} = b_n x_n, \qquad n = 1, 2, \ldots,$

where $\{b_n\}$ and $\{c_n\}$ are sequences satisfying $b_n > 0$ for $n \in \mathbb{N}$ and $c_n > 0$ for $n \in \mathbb{N} \cup \{0\}$, respectively. Those Riccati transformations are expressed by $w_n = x_{n+1}/x_n$, $y_n = c_n x_{n+1}/x_n$ and $z_n = b_{n+1}x_{n+1}/(c_n x_n)$. Here, we assume that there exists an *M* ∈ N such that $x_n > 0$ for $n \ge M$. The transformations lead to the first-order non-linear difference equations

$$
c_n w_n + \frac{c_{n-1}}{w_{n-1}} = b_n,
$$

$$
y_n + \frac{c_{n-1}^2}{y_{n-1}} = b_n
$$

<http://dx.doi.org/10.1016/j.amc.2017.01.048> 0096-3003/© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: [jsugie@riko.shimane-u.ac.jp,](mailto:jsugie@riko.shimane-u.ac.jp) jsugie@math.shimane-u.ac.jp

and

$$
q_n z_n + \frac{1}{z_{n-1}} = 1, \quad q_n = \frac{c_n^2}{b_n b_{n+1}}
$$
\n(1.2)

with $n = M + 1, M + 2, \ldots$, respectively (see also the books [\[1,](#page--1-0) Chapter 6], [\[9,](#page--1-0) Chapter 7]). Although the transformation

$$
z_n = \frac{b_{n+1}x_{n+1}}{c_nx_n}
$$

is the most complicated one out of those three, Eq. (1.2) is easiest to use because the coefficient of (1.2) is only one.

It is clear that Eq. [\(1.1\)](#page-0-0) has the trivial solution $\{x_n\}$; that is, $x_n = 0$ for $n \ge 0$. The others are called non-trivial solutions. A non-trivial solution of [\(1.1\)](#page-0-0) is said to be *oscillatory* if, for every $N \in \mathbb{N}$ there exists an $n \ge N$ such that $x_n x_{n+1} \le 0$. Otherwise, it is said to be *nonoscillatory*. Hence, a nonoscillatory solution $\{x_n\}$ of [\(1.1\)](#page-0-0) satisfies that $x_n > 0$ for *n* sufficiently large or x_n < 0 for *n* sufficiently large. Since Eq. [\(1.1\)](#page-0-0) is linear, {*xn*} is a solution of [\(1.1\)](#page-0-0) if and only if {−*xn*} is also a solution of [\(1.1\).](#page-0-0) Hence, it is sufficient to consider that a nonoscillatory solution $\{x_n\}$ of [\(1.1\)](#page-0-0) continues being positive for all large *n*.

As known well, Sturm's separation theorem holds for Eq. [\(1.1\).](#page-0-0) About the proof of Sturm's separation theorem concerning linear difference equations, see [9, pp. [321–322\]](#page--1-0) for example. From Sturm's separation theorem it follows that if one nontrivial solution of [\(1.1\)](#page-0-0) is nonoscillatory, then all its non-trivial solutions are nonoscillatory. Hence, oscillatory solutions and nonoscillatory solutions do not coexist in Eq. [\(1.1\).](#page-0-0)

Using Eq. (1.2) equivalent to (1.1) , Hooker et al. $[15]$ have proved the following results.

Theorem A. If $q_n \ge 1/(4-\varepsilon)$ for some $\varepsilon > 0$ and for all sufficiently large n, then all non-trivial solutions of [\(1.1\)](#page-0-0) are oscillatory.

Theorem B. *If* $q_n \leq 1/4$ *for all sufficiently large n, then all non-trivial solutions of [\(1.1\)](#page-0-0) are nonoscillatory.*

As can be seen from Theorems A and B, the constant $1/4$ is a critical value that divides oscillation and nonoscillation of solutions of [\(1.1\).](#page-0-0) Such a value is called an *oscillation constant*. It seems to be appropriate that the constant 1/4 appears in Theorems A and B, because it often becomes the oscillation constant for some ordinary differential equations. For example, it is well-known that all non-trivial solutions of the Euler differential equation

$$
x''+\frac{\gamma}{t^2}x=0
$$

are nonoscillatory if and only if $\gamma \leq 1/4$ (for example, see [\[14,18,21,26\]\)](#page--1-0). In this sense, it is not exaggeration even if we say that Theorems A and B have similarity between the results of ordinary differential equations. After that, Hooker et al. [\[16\]](#page--1-0) and Kwong et al. [\[19\]](#page--1-0) improved the sufficient condition was given in Theorem A which guarantees that all nontrivial solutions of (1.1) are oscillatory.

[Equation](#page-0-0) (1.1) can be rewritten as the self-adjoint difference equation

$$
\Delta(c_{n-1}\Delta x_{n-1}) + p_n x_n = 0, \qquad (1.3)
$$

where Δ is the forward difference operator $\Delta x_n = x_{n+1} - x_n$ and

$$
p_n = c_{n-1} + c_n - b_n
$$

for $n \in \mathbb{N}$. The oscillation and nonoscillation of (1.3) and more generalized equations have been considered extensively by many authors. For example, see $[1-5,9,12,17]$ and the references cited therein. Chen and Erbe $[4]$ discussed the oscillation and nonoscillation properties of (1.3) and obtained oscillation and nonoscillation criteria by using Riccati techniques. Their main assumptions were

$$
\limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} p_j > -\infty
$$
\n(1.4)

and others. Since the beginning of this century, oscillation and nonoscillation criteria are now being actively reported for the self-adjoint difference equation

$$
\Delta(c_{n-1}\Phi(\Delta x_{n-1})) + p_n\Phi(x_n) = 0,\tag{1.5}
$$

which is a generalization of (1.3) . Here, $\Phi(z)$ is a real-valued nonlinear function defined by

$$
\Phi(z) = \begin{cases} |z|^{p-2}z & \text{if } z \neq 0, \\ 0 & \text{if } z = 0 \end{cases}
$$

for *z* ∈ R with *p* > 1 a fixed real number. For example, see [\[7,10,11,13,20,22–24,27\].](#page--1-0) Eq. (1.5) is often called a *half-linear* difference equation. Most of these results emphasized similarity of difference equations (1.3) and (1.5) and the differential equation

$$
(c(t)x')' + p(t)x = 0
$$

and its generalization

 $(c(t)\Phi(x'))' + p(t)\Phi(x) = 0,$

Download English Version:

<https://daneshyari.com/en/article/5775835>

Download Persian Version:

<https://daneshyari.com/article/5775835>

[Daneshyari.com](https://daneshyari.com/)