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a b s t r a c t 

Usually, neurons stimulated by constant current exhibit one of two types of behavior: for 

type-1 neurons, the curve representing “firing frequency versus input current” is continu- 

ous; for type-2 neurons, there is a discontinuity in such a curve. Here, we reproduce these 

typical behaviors from a discrete-time model based on the dynamics of ion channels. In 

this model, the axonal membrane is considered as a lattice and each patch of this lattice 

contains a set of ion channels. The state transitions of the voltage-gated ion channels are 

governed by deterministic rules. We show that the frequency-current relationship obtained 

from this model is similar to the one derived from the Hodgkin–Huxley equations, which 

are commonly used to describe type-2 neurons. We also show that our approach can be 

convenient to model type-1 neurons. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Consider a neuron stimulated by a constant electric current. The frequency-current curve expresses the relationship be- 

tween the current per unit area I applied to this neuron and the frequency f of its spikes. It is experimentally observed that, 

above a threshold current, the neuron fires periodically. Thus, there occurs a transition from a quiescent mode (with f = 0 ) 

to an oscillatory behavior (with f > 0). For type-1 neurons, this transition is smooth, continuous; for type-2 neurons, there 

is a jump, a discontinuity in the f − I curve [1–6] . The classical equations proposed by Hodgkin and Huxley in 1952 [7] are 

usually employed to model type-2 neurons [2,8,9] . 

From the point of view of the Dynamical Systems Theory, qualitative changes on the asymptotical behavior caused by 

the variation of parameter values of a dynamical system are known as bifurcations. The transition from steady state to 

periodic solution found in neurons under current clamp can be a consequence of Hopf bifurcation, saddle-node-onto-limit- 

cycle bifurcation, or saddle-node-off-limit-cycle bifurcation [4–6,10,11] . In this case, the parameter value to be varied is the 

intensity of the input current. 

Here, we show that our neuron model [12] can reproduce both types of f − I curves. This discrete-time model for com- 

puting the time evolution of the electric potential of axonal membrane is based on cellular automaton (CA) [13] , in which 

each cell represents a membrane patch. Each patch of the CA lattice contains a set of leak and voltage-gated ion channels 

and the state transitions occurring in the voltage-gated channels are driven by deterministic rules. 
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This manuscript is organized as follows. In Section 2 , our model is succinctly described. In Section 3 , f − I curves for 

both types of neurons are presented. For type-2 neurons, a comparison with the curve derived from the Hodgkin–Huxley 

equations is performed. In Section 4 , the main conclusions are summarized. 

2. The model 

Here, we briefly review our model [12] . In this model, the axonal membrane is divided into small patches. In each patch, 

the membrane electric potential E [ t ] at the time step t is due to two phenomena: the ionic diffusion below the membrane 

(which corresponds to the exchange of ions among neighbor patches) and the proportion of ion channels in the open state. 

The ions considered in this model are sodium and potassium. There are voltage-gated and leak ion channels. 

Each voltage-gated ion channel is modeled as a finite-state machine. The transition from a state to another depends 

on E [ t ] and local “timers”. A timer specifies the time interval that a voltage-gated channel remains in a particular state, 

forcing a transition when a time limit is reached; then, the timer is reset. Inspired by the Hodgkin–Huxley model [7] , five 

timers are considered: two for the potassium channels, denoted by the time variables t opening K and t open K , and three for the 

sodium channels, denoted by t opening Na , t open Na , and t inacti v ated Na . The corresponding time limits of these timers are τopening K , 

τopen K , τopening Na , τopen Na , and τinacti v ated Na . For potassium channels, the sequence of states is: opening → open → closed; 

for sodium channels, the sequence is: opening → open → inactivated → closed. For all voltage-gated channels, the default 

state is closed, in which the channel does not allow the exchange of ions between inside and outside the axon. There is no 

timer associated to the closed state. Note that the opening state is intermediary between closed and open. In this state, the 

channel behaves as closed, but after a fixed time interval (given by τopening K or τopening Na ), it changes to open. The intention 

is to take into account the time that a voltage-gated channel spends to alter its physical conformation, when a tension 

threshold is exceeded. The number of voltage-gated sodium channels per patch and the number of voltage-gated potassium 

channels per patch are denoted by d Na and d K , respectively. 

Let s K [ t] be the state of a voltage-gated potassium channel at the time step t . The state-transition function s K [ t + 1] = 

F (s K [ t]) is written as: 

s K (t + 1) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

opening , if (E[ t] ≥ E openLim K ∧ s K [ t] = closed ) 

∨ (t opening K < τopening K ∧ s K [ t] = opening ) 

open , if (t open K < τopen K ∧ s K [ t] = open ) 

∨ (t opening K = τopening K ∧ s K [ t] = opening ) 

closed , if (E[ t] < E openLim K ∧ s K [ t] = closed ) 

∨ (t open K = τopen K ∧ s K [ t] = open ) 

(1) 

The symbols ∧ and ∨ denote the “logical and” and the “logical or”, respectively. The parameter E openLim K is the tension 

threshold at which the potassium channels open. Note that a potassium channel will be in the opening state at t + 1 , when 

at t either the membrane potential is equal to or greater than E openLim K and the previous state is closed, or if it is already 

in the opening state in t but τopening K was not reached yet. When t opening K = τopening K , the channel opens and it remains in 

this state for t open K < τopen K . At t open K = τopen K , the channel closes. It stays closed if the membrane potential of the patch in 

which the canal is embedded is less than E openLim K . 

Let s Na [ t] be the state of a voltage-gated sodium channel at the time step t . The state-transition function s Na [ t + 1] = 

F (s Na [ t]) is given by: 

s Na (t + 1) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

opening , if (E[ t] ≥ E openLim Na ∧ s Na [ t] = closed ) 

∨ (t opening Na < τopening Na ∧ s Na [ t] = opening ) 

open , if (t open Na < τopen Na ∧ s Na [ t] = open ) 

∨ (t opening Na = τopening Na ∧ s Na [ t] = opening ) 

inactivated , if (t inacti v ated Na < τinacti v ated Na ∧ s Na [ t] = inactivated ) 

∨ (t open Na = τopen Na ∧ s Na [ t] = open ) 

closed , if (E[ t] < E openLim Na ∧ s Na [ t] = closed ) 

∨ (t inacti v ated Na = τinacti v ated Na ∧ s Na [ t] = inactivated ) 

(2) 

in which E openLim Na is the tension threshold at which the sodium channels open. Observe that after the open state, the 

sodium channels remain inactivated while t inacti v ated Na < τinacti v ated Na . When t inacti v ated Na = τinacti v ated Na , it closes. The other 

rules are similar to the rules governing the dynamics of the voltage-gated potassium channels. 

The membrane electrical potential in a patch at the time t is determined from: 

E[ t] = propOpen Na [ t] × E Na + propOpen K [ t] × E K + propNotOpen [ t] × E local [ t] (3) 

if E[ t] − E[ t − 1] ≤ dE 
dt 

∣∣
max 

× �t . When E[ t] − E[ t − 1] > 

dE 
dt 

∣∣
max 

× �t, then: 
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