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a b s t r a c t 

One of the basic principles of Approximation Theory is that the quality of approxima- 

tions increase with the smoothness of the function to be approximated. Functions that 

are smooth in certain subdomains will have good approximations in those subdomains, 

and these sub-approximations can possibly be calculated efficiently in parallel, as long as 

the subdomains do not overlap. This paper proposes an algorithm that first calculates sub- 

approximations on non-overlapping subdomains, then extends the subdomains as much as 

possible and finally produces a global solution on the given domain by letting the subdo- 

mains fill the whole domain. Consequently, there will be no Gibbs phenomenon along the 

boundaries of the subdomains. The method detects faults and gradient faults with good 

accuracy. Throughout, the algorithm works for fixed scattered input data of the function 

itself, not on spectral data, and it does not resample. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Assume that a large set { (x i , f i ) , i = 1 , . . . , N} of data is given, where the points x i are scattered in R 

d and form a set X . 

We want to find a function u that recovers the data on a domain � containing the points, i.e. 

u : � → R , 

u (x i ) ≈ f i , i = 1 , . . . , N. 

We are particularly interested in situations where the data have smooth interpolants in certain non-overlapping subdomains 

�j , but not globally. The reason may be that there are discontinuities in the function itself or its derivatives. Thus a major 

goal is to identify subdomains �j ⊆�, 1 ≤ j ≤ J and smooth functions u j , 1 ≤ j ≤ J such that 

u j : � j → R , 

u j (x i ) ≈ f i for all x i ∈ X ∩ � j . 

The solution to the problem is piecewise defined as 

u (x ) := u j (x ) for all x ∈ � j , 1 ≤ j ≤ J. 
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Our motivation is the well-known fact that errors and convergence rates in Approximation Theory always improve with 

increasing smoothness. Thus on each subdomain we expect to get rather small errors, much smaller than if the problem 

would have been treated globally, where the non-smoothness is a serious limiting effect. 

From the viewpoint of Machine Learning (see [7,20,21] for details) this is a mixture of classification and regression. The 

domain points have to be classified in such a way that on each class there is a good regression model. The given training 

data are used for both classification and regression, but in this case the classification is dependent on the regression, and 

the regression is dependent on the classification. 

Furthermore, there is a serious amount of geometry hidden behind the problem. The subdomains should be connected, 

their interiors should be disjoint, and the union of their closures should fill the domain completely. This is why a black-box 

machine learning approach is not pursued here. Instead, Geometry and Approximation Theory play a dominant part. For 

the same reason, we avoid to calculate edges or fault lines first, followed by local approximations later. The approximation 

properties should determine the domains and their boundaries, not the other way round. 

In particular, localized approximation will combine Geometry and Approximation Theory and provide a central tool, to- 

gether with adaptivity . The basic idea is that in the interior of each subdomain, far away from its boundary, there should be 

a good and simple approximation to the data at each data point from the data of its neighbors. 

There is quite an amount of literature on the subject, e.g. [1,2,4,5,9,10,12–15] , but this approach differs in several aspects. 

There will be no a-priori assumptions on the form and placement of faults or singularities, and we expect the overall 

approximation quality to be not significantly reduced by these, because we focus on the errors in the subdomains, not on 

the total error. The data may be rather irregularly distributed, and we use a graph-theoretic method for finding disjoint 

subdomains. For the localized approximations, we use kernel-based methods instead of moving least squares or Shepard- 

type techniques because they automatically adapt to the best possible convergence rate under an unknown smoothness 

[16] . 

2. A basic tool 

The following serves as an underpinning of various aspects of the adaptive algorithm that we shall describe below. We 

need a reliable criterion that tells us whether a data point x i belongs to a subdomain �j or another subdomain. As long as 

we construct a local interpolant on a subdomain �j where the data come from a single smooth function, we have all tools 

of kernel-based interpolation at our disposal, and we can predict to some extent how the interpolation error will behave. If 

such a prediction fails on a new data point x i , this model is violated, and we shall try to assign x i to another subdomain. 

We use the Hilbert space norms of the local interpolants as a criterion, and we now show why. 

Assume that we have a kernel-based interpolant s X , f to data of a function f on a finite set X of centers, and let P X ( x ) be 

the associated Power Function. See the standard literature (e.g. [6,8,18,22] ) on this subject for details. In particular, there is 

a strict error bound 

| f (x ) − s X, f (x ) | ≤ P X (x ) ‖ f‖ K 

in the norm ‖ . ‖ K of the “native” Hilbert space where the kernel K is reproducing, and there is orthogonality 

‖ f‖ K = ‖ s X, f ‖ 

2 
K + ‖ f − s X, f ‖ 

2 
K 

due to the standard norm-minimality of the interpolant. If the set X gets large, the norms ‖ s X , f ‖ K grow towards ‖ f ‖ K . This 

is what is to be expected in this model situation for “good” local interpolation. 

Furthermore, there is an exact update formula 

‖ s X∪{ x } , f ‖ 

2 
K = ‖ s X, f ‖ 

2 
K + 

( f (x ) − s X, f (x )) 2 

P 2 
X 
(x ) 

(1) 

for the Hilbert space norms. See [19] , but the basic recursion arguments are already in [17] . This shows that the increase of 

the norm of the interpolant after adding a new interpolation point x is small if the old interpolant already predicts the new 

function value f ( x ) well. But if the new value comes from a different local function, the norm can be expected to jump up 

dramatically. This is confirmed by the numerical results at the end of this section. 

If the set X is already large enough to let ‖ s X , f ‖ K come close to ‖ f ‖ K , then 

‖ s X, f ‖ 

2 
K ≤ ‖ s X, f ‖ 

2 
K + 

( f (x ) − s X, f (x )) 2 

P 2 
X 
(x ) 

= ‖ s X∪{ x } , f ‖ 

2 
K ≤ ‖ f‖ 

2 
K 

does not leave much leeway in (1) for the increase of ‖ s X, f ‖ 2 K 
towards ‖ f‖ 2 

K 
, and any larger increase signalizes that the 

current model is violated, i.e. that the data do not come from a single function f in the native space of the kernel. 

The Power Function value in the denominator is independent of f and cares for the geometric fact that if x is close 

to X , the new error in x must be considerably smaller than for points far from X , if the same increase of the norm of the 

interpolant is to be attained. Thus the norm of the interpolant allows a “geometry-corrected” evaluation of what will happen 

if x is added to X . 

We add a characteristic example here. The function 

f 4 (x, y ) := ((x − 0 . 5) 2 + (y − 0 . 5) 2 ) 0 . 35 + 0 . 05 · (x − 0 . 5) 0 + (2) 
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