Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Enumeration of spanning trees of middle graphs

Weigen Yan¹

School of Sciences, Jimei University, Xiamen 361021, China

ARTICLE INFO

Keywords: Line graph Spanning tree Middle graph Generalized Wye-Delta transform

ABSTRACT

Let *G* be a simple graph with *n* vertices and *m* edges, and Δ and δ the maximum degree and minimum degree of *G*. Suppose *G'* is the graph obtained from *G* by attaching $\Delta - d_G(v)$ pendent edges to each vertex *v* of *G*. Huang and Li (Bull. Aust. Math. Soc. 91(2015), 353–367) proved that if *G* is regular (i.e., $\Delta = \delta, G = G'$), then the middle graph of *G*, denoted by M(G), has $2^{m-n+1}\Delta^{m-1}t(G)$ spanning trees, where t(G) is the number of spanning trees of *G*. In this paper, we prove that t(M(G)) can be expressed in terms of the summation of weights of spanning trees of *G* with some weights on its edges. Particularly, we prove that if *G* is irregular (i.e., $\Delta \neq \delta$), then $t(M(G')) = 2^{m-n+1}\Delta^{m+k-1}t(G)$, where *k* is the number of vertices of degree one in *G'*.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The graphs considered in this paper are simple, if not specified. Let *G* be a connected graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set $E(G) = \{e_1, e_2, ..., e_m\}$. Denote the maximum degree and minimum degree of *G* by $\Delta(G)$ and $\delta(G)$, respectively. We define the revision of *G*, denoted by *G'*, as the graph obtained from *G* by attaching $\Delta(G) - d_G(v)$ pendent edges to each vertex *v* of *G*, where $d_G(v)$ is the degree of vertex *v* of *G*. Obviously, G' = G if *G* is regular and *G'* has $n + \sum_{v \in V(G)} [\Delta(G) - d_G(v)] = n + n\Delta(G) - 2m$ vertices, where *n* vertices have degree $\Delta(G)$ and $n\Delta(G) - 2m$ vertices have degree one. For the graph *G* illustrated in Fig. 1(a), *G'* is illustrated in Fig. 1(b). Suppose G = (V(G), E(G)) is a connected graph with vertex set V(G) and edge set E(G). Given an edge e = (u, v) of *G*, let V(e) denote the set consisting of the two end vertices of *e*. Now we can define three related graphs – the line graph L(G), the subdivision graph S(G), and the middle graph M(G) of *G* as follows (cf. e.g., [3]):

Line graph: The vertices of L(G) are the edges of G. Two edges of G that share a common vertex are considered to be adjacent in L(G).

Subdivision graph: S(G) is the graph obtained by inserting an additional vertex in each edge of *G*. Equivalently, each edge of *G* is replaced by a path of length 2.

Middle graph: M(G) is obtained from G by inserting a new vertex into each edge of G, then joining with edges those pairs of new vertices on adjacent edges of G.

For the graph *G* in Fig. 1(a), the corresponding subdivision graph *S*(*G*), line graph *L*(*G*), and the middle graph *M*(*G*) are illustrated in Fig. 2(a)–(c), respectively. Given G = (V(G), E(G)), where $E(G) \subset \binom{V(G)}{2}$, we define two other sets that we use frequently:

 $EE(G) := \{(e, f) : e, f \in E(G), |V(e) \cap V(f)| = 1\},\$

http://dx.doi.org/10.1016/j.amc.2017.02.040 0096-3003/© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: weigenyan@263.net, weigenyan@jmu.edu.cn

¹ This work is supported by NSC Grant (11571139).

Fig. 1. (a) A connected graph G. (b) The graph G' of G.

Fig. 2. (a) The subdivision graph S(G) of the graph G in Fig. 1(a). (b) The line graph L(G) of the graph G in Fig. 1(a), which is illustrated with solid lines. (c) The middle graph M(G) of the graph G in Fig. 1(a).

 $EV(G) := \{(e, v) : e \in E(G), v \in V(e)\}.$

Then we may write the line, subdivision, and middle graphs of *G* above as follows:

L(G) = (E(G), EE(G)),

 $S(G) = (V(G) \cup E(G), EV(G)),$

 $M(G) = (V(G) \cup E(G), EE(G) \cup EV(G)).$

Let $\mathcal{T}(G)$ denote the set of spanning trees of a graph *G* and $t(G) = |\mathcal{T}(G)|$. Hence t(G) denotes the number of spanning trees of *G*. A natural question is to consider the relation between the numbers of spanning trees of *G* and L(G), S(G), or M(G). For the subdivision graph S(G), it is well known that $t(S(G)) = 2^{m-n+1}t(G)$ [2]. The enumerative problem of spanning trees of the line graph has extensively been studied. We list some related results as follows.

Theorem 1 ([1,3,7,10]). Suppose G is a \triangle -regular graph with n vertices and m edges. Then

$$t(L(G)) = 2^{m-n+1} \Delta^{m-n-1} t(G).$$
⁽¹⁾

The author of the current paper generalized the result above as follows.

Theorem 2 ([11]). Suppose G is a connected graph with n vertices and m edges and G' the revision of G. Then

$$t(L(G')) = 2^{m-n+1} \Delta^{m+s-n-1} t(G),$$
⁽²⁾

where Δ is the maximum degree of G and s is the number of vertices of degree one in G'.

Dong and Yan [4] used a combinatorial method to obtain a more general result than that in Theorems 1 and 2 as follows.

Theorem 3 ([4]). Suppose that G is a connected graph with vertex set V(G) and edge set E(G). Then

$$t(L(G)) = \prod_{\nu \in V(G)} d(\nu)^{d(\nu)-2} \sum_{T \in \mathcal{T}(G)} \prod_{e \in E(G) - E(T)} \left(d(u_e)^{-1} + d(\nu_e)^{-1} \right),$$
(3)

where $d(v) = d_G(v)$, $e = (u_e, v_e)$, and $\mathcal{T}(G)$ denotes the set of spanning trees of G.

The theorem above results in the following corollary.

Corollary 1 ([4]). Suppose G = (U, V; E) is a connected bipartite graph with *n* vertices and *m* edges such that $d(x) \in \{1, a\}$ for all $x \in U$ and $d(y) \in \{1, b\}$ for all $y \in V$, where $a \ge 2$ and $b \ge 2$. Then

$$t(L(G)) = a^{(a-2)n_1} b^{(b-2)n_2} (a^{-1} + b^{-1})^{m-n+1} t(G),$$
(4)

where n_1 is the number of vertices x in U with d(x) = a and n_2 is the number of vertices y in V with d(y) = b.

Recently, Gong and Jin [5] used the generalized Wye-Delta transform to obtain a result equivalent to Theorem 3.

For the enumerative problem of spanning trees of the middle graph, by a method based on graph spectra, Huang and Li [6] obtained the following result.

Download English Version:

https://daneshyari.com/en/article/5775864

Download Persian Version:

https://daneshyari.com/article/5775864

Daneshyari.com