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a b s t r a c t 

In this paper we propose a power penalty method for a linear complementarity problem 

(LCP) involving a fractional partial differential operator in two spatial dimensions arising in 

pricing American options on two underlying assets whose prices follow two independent 

geometric Lévy processes. We first approximate the LCP by a nonlinear 2D fractional partial 

differential equation (fPDE) with a penalty term. We then prove that the solution to the 

fPDE converges to that of the LCP in a Sobolev norm at an exponential rate depending on 

the parameters used in the penalty term. The 2D fPDE is discretized by a 2nd-order finite 

difference method in space and Crank–Nicolson method in time. Numerical experiments 

on a model Basket Option pricing problem were performed to demonstrate the convergent 

rates and the effectiveness of the penalty method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Option valuation through a partial differential equation approach has been increasingly attracting much attention from 

financial engineers, mathematicians and statisticians, ever since the publication of the two seminal papers [4] and [20] . 

In [4] the authors showed that in a complete market the price of an option on a stock whose price follows a geometric 

Brownian motion with constant drift and volatility satisfies a second order parabolic partial differential equation, known 

as the Black–Scholes (BS) equation. However, Gaussian shocks used in BS model often underestimate the probability that 

stock prices usually exhibit large movements over small time steps which can be demonstrated by empirical financial mar- 

ket data. When jumps are large and rare, a jump-diffusion pricing model can be used to capture them. More details of 

these models and their numerical solutions can be found in, for example, [1,2,13,30,31] . If there are infinitely many jumps 

in a finite time interval, an infinite activity Lévy process can be used to capture both frequent small and rare large moves. 

It has been shown in [6] that, the price of an option on a single asset satisfies a 1D parabolic fractional Black–Scholes 

(fBS) equation when its underlying asset price follows a geometric Lévy process. This 1D fBS equation and the correspond- 

ing American option pricing problem can be solved numerically by the numerical methods proposed recently by us in 

[7,8] . In [10] , Clift and Forsyth proposed an implicit finite difference method for the two dimensional parabolic partial 
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integro-differential equation (PIDE) to price two-asset European and American options whose assets follow the correlated 

finite activity jump diffusion model. 

In this work, we shall present a numerical method consisting of a penalty approach and a discretization scheme for 

pricing American options written on two assets whose prices follow two independent geometric Lévy processes. Under the 

same assumptions as in [6] , it is easy to show that the value of such a two-asset option of European type (eg. Rainbow or 

Basket Option) is determined by a 2D fBS equation and the value of the corresponding American option is governed by a 

linear complementarity problem involving the fractional partial differential operator used in the European option model. The 

latter can also be formulated as a fractional partial differential variational inequality. We comment that, the CGMY jump- 

diffusion process [5] is also popular in option pricing. An fBS equation for pricing European options has also been developed 

in [6] . However, in the present work, we only consider the fBS equations and inequalities associated with the geometric 

Lévy process and will develop algorithms for the fractional differential LCPs based on the CGMY jump-diffusion process in 

a future paper. 

Penalty approaches have been used very successfully for solving constrained optimization problems. In recent years, 

penalty methods have been used for complementarity or variational inequality problems in both finite and infinite dimen- 

sions [3,25,35] , particularly those from the valuation of financial options [15,18,19,22,27,33,34,36] . Recently, modern opti- 

mization techniques such as the use of grossone theory proposed in [24] in nonlinear programming problems with differ- 

entiable penalty functions to determine the penalty parameters has been developed in [11] . In [8] , we proposed a power 

penalty method for solving the fBS equation governing single-asset American option pricing. In this paper, we construct and 

analyze a power penalty method for the fractional differential complementarity problem arising in pricing the aforemen- 

tioned two-asset American options. In particular, we will establish a convergence theory for the penalty method proposed. 

We will then propose a 2nd-order accurate scheme for the discretization of the 2D nonlinear fBS equation in two spatial 

dimensions generated by the penalty method, based on our recent work in [7] for the 1D fBS equation arising in pricing 

one-asset options. 

While the numerical solution of fractional differential LCPs and fBS equations arising in pricing options written on one 

risky asset has been discussed in various existing works, to our best knowledge, there are no numerical methods for their 

2D counterparts governing the valuation of options on two assets. Therefore, the present work will fill this gap and provide 

a numerical tool for pricing European and American options of the aforementioned type. 

The organization of this paper is as follows. In the next section, we will give a brief account of the fBS equation and frac- 

tional differential LCP, along with their initial and boundary conditions, governing the valuation of European and American 

options written on two independent risky assets. We will also formulate the LCP as a variational inequality and show that 

the latter problem is uniquely solvable. In Section 3 , we will first propose the power penalty method with positive penalty 

parameters λ > 1 and k , and consider the unique solvability of the penalty equation. We will then prove that the solution to 

the penalty equation converges to that of the variational inequality at the rate O(λ−k/ 2 ) . A 2nd-order accurate discretization 

scheme is proposed in Section 4 for the penalty equation. In Section 5 , we will present some numerical experimental results 

using an American Basket option pricing problem to numerically demonstrate the rates of convergence and usefulness of the 

numerical method. 

2. The option pricing problem 

It is shown in [6] that the value of an option whose price follows a geometric Lévy process is governed by a 1D fBS 

equation. Under the same assumptions as in [6] , it is trivial to show that the value U of a European option written on 

two assets (eg. Rainbow or Basket Option) whose prices S 1 and S 2 follow two independent geometric Lévy processes is 

determined by the following two-dimensional fBS equation: 

L U := −U t + a 1 U x + a 2 U y − b 1 [ −∞ 
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α
x U] − b 2 [ −∞ 
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Boundary and terminal conditions can be defined for the above equation depending on the types of options and the strike 

price K . From the transformations x = ln S 1 and y = ln S 2 , we have 

lim 

x →−∞ 

U x = lim 

x →−∞ 

U S 1 e 
x = 0 , lim 

y →−∞ 

U y = lim 

y →−∞ 

U S 2 e 
y = 0 , 

since U S 1 
and U S 2 

are bounded as S 1 , S 2 → 0 + in practice. In computation, the infinite solution domain (−∞ , ∞ ) 2 

has to be truncated into � = (x min , x max ) × (y min , y max ) , where x min , x max , y min and y max are four constants satisfying 
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