Unified treatment of several asymptotic expansions concerning some mathematical constants

CrossMark

Chao-Ping Chen ${ }^{\mathrm{a}, *}$, Junesang Choi ${ }^{\mathrm{b}}$
${ }^{\text {a S School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, Henan, China }}$
${ }^{\mathrm{b}}$ Department of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea

A R T I C L E IN F O

MSC:

Primary 41A60
33B15
Secondary 11B68
11B73
11 Y 60

Keywords:

Euler-Mascheroni constant
Constants of Landau and Lebesgue
Glaisher-Kinkelin constant
Choi-Srivastava constants
Asymptotic expansion

Abstract

Recently various approximation formulas for some mathematical constants have been investigated and presented by many authors. In this paper, we first find that the relationship between the coefficients p_{j} and q_{j} is such that $$
\psi\left(x \sum_{j=0}^{\infty} q_{j} x^{-j}\right) \sim \ln \left(x \sum_{j=0}^{\infty} p_{j} x^{-j}\right), \quad x \rightarrow \infty
$$ where ψ is the logarithmic derivative of the gamma function (often referred to as psi function) and $p_{0}=q_{0}=1$. Next, by using this result, we give a unified treatment of several asymptotic expansions concerning the Euler-Mascheroni constant, Landau and Lebesgue constants, Glaisher-Kinkelin constant, and Choi-Srivastava constants.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Euler (or, more precisely, the Euler-Mascheroni) constant γ is defined as follows (see, e.g., [58, Section 1.2]):

$$
\begin{align*}
\gamma & :=\lim _{n \rightarrow \infty}\left(H_{n}-\ln n\right) \\
& \cong 0.577215664901532860606512090082402431042 \ldots \tag{1.1}
\end{align*}
$$

where H_{n} are called the nth harmonic numbers defined by

$$
\begin{equation*}
H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \quad(n \in \mathbb{N}:=\{1,2,3, \ldots\}) \tag{1.2}
\end{equation*}
$$

The constant γ is closely related to the familiar gamma function $\Gamma(z)$ so chosen that $\Gamma(1)=1$ in the Weierstrass product form of the gamma function (see [1, p. 255, Eq. (6.1.3)]; see also [57, Section 1.1]):

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left[\left(1+\frac{z}{n}\right) e^{-z / n}\right] \quad(|z|<\infty) \tag{1.3}
\end{equation*}
$$

[^0]The logarithmic derivative of the gamma function:

$$
\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

is known as the psi (or digamma) function. It is well known (see, e.g., [1, p. 258]) that

$$
\begin{equation*}
\psi(n+1)=-\gamma+H_{n} \quad\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right) \tag{1.4}
\end{equation*}
$$

where the empty sum (as usual, throughout this paper) is understood to be nil.
Young [66] proved that

$$
\begin{equation*}
\frac{1}{2(n+1)}<D_{n}-\gamma<\frac{1}{2 n} \quad(n \in \mathbb{N}), \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n}:=H_{n}-\ln n \quad(n \in \mathbb{N}) . \tag{1.6}
\end{equation*}
$$

The convergence of the sequence D_{n} to γ is very slow. By changing the logarithmic term in (1.6), DeTemple [29], Negoi [49] and Chen et al. [19] have presented, respectively, faster asymptotic formulas as follows:

$$
\begin{align*}
& H_{n}-\ln \left(n+\frac{1}{2}\right)=\gamma+O\left(n^{-2}\right) \quad(n \rightarrow \infty) \tag{1.7}\\
& H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}\right)=\gamma+O\left(n^{-3}\right) \quad(n \rightarrow \infty) \tag{1.8}\\
& H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}\right)=\gamma+O\left(n^{-4}\right) \quad(n \rightarrow \infty) . \tag{1.9}
\end{align*}
$$

Very recently, Chen and Mortici [18] provided a still faster asymptotic formula than those in (1.7)-(1.9):

$$
\begin{equation*}
H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}+\frac{23}{5760 n^{3}}\right)=\gamma+O\left(n^{-5}\right) \quad(n \rightarrow \infty) \tag{1.10}
\end{equation*}
$$

and posed the following natural question:
Open problem 1.1. For a given $m \in \mathbb{N}$, find the constants $p_{j}(j=1,2, \ldots, m)$ such that

$$
\begin{equation*}
H_{n}-\ln \left(n\left(1+\sum_{j=1}^{m} \frac{p_{j}}{n^{j}}\right)\right) \tag{1.11}
\end{equation*}
$$

is the fastest sequence which would converge to γ.
Yang [65] first presented the solution of the Open problem 1.1 by using Bell polynomials of a logarithmic type. Subsequently, other proofs of the Open problem 1.1 were published by Gavrea and Ivan [34,35], Lin [44], Chen et al. [16]. For example, Lin [44] gave a formula for determining the coefficients of the asymptotic expansion

$$
\begin{equation*}
\psi(x+1) \sim \ln \left(x+\frac{1}{2}+\frac{1}{24 x}-\frac{1}{48 x^{2}}+\frac{23}{5760 x^{3}}+\frac{17}{3840 x^{4}}-\cdots\right) \quad(x \rightarrow \infty) \tag{1.12}
\end{equation*}
$$

and then applied it to give the proof of the Open problem 1.1.
The constants of Landau and Lebesgue are defined, for all $n \in \mathbb{N}_{0}$, in order, by

$$
\begin{equation*}
G_{n}=\sum_{k=0}^{n} \frac{1}{16^{k}}\binom{2 k}{k}^{2} \quad\left(n \in \mathbb{N}_{0}\right) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{\sin \left(\left(n+\frac{1}{2}\right) t\right)}{\sin \left(\frac{1}{2} t\right)}\right| \mathrm{d} t \quad\left(n \in \mathbb{N}_{0}\right), \tag{1.14}
\end{equation*}
$$

which play important roles in the theories of complex analysis and Fourier series, respectively.
Recently, the following two open problems were posed in [13,14].
Open problem 1.2. Let h be a given real number. Find the constants $q_{j}(h)(j \in \mathbb{N})$ such that

$$
G_{n} \sim c_{0}+\frac{1}{\pi} \psi\left(n+\frac{5}{4}+\sum_{j=1}^{\infty} \frac{q_{j}(h)}{(n+h)^{j}}\right) \quad(n \rightarrow \infty)
$$

https://daneshyari.com/en/article/5775901

Download Persian Version:

https://daneshyari.com/article/5775901

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chenchaoping@sohu.com (C.-P. Chen), junesang@mail.dongguk.ac.kr (J. Choi).

