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a b s t r a c t 

The radiative transfer equation (RTE) arises in a wide variety of applications, in particular, 

in biomedical imaging applications associated with the propagation of light through the bi- 

ological tissue. However, highly forward-peaked scattering feature in a biological medium 

makes it very challenging to numerically solve the RTE problem accurately. One idea to 

overcome the difficulty associated with the highly forward-peaked scattering is through 

the use of a delta-Eddington phase function. This paper is devoted to an RTE framework 

with a family of delta-Eddington-type phase functions. Significance in biomedical imaging 

applications of the RTE with delta-Eddington-type phase functions are explained. Math- 

ematical studies of the problems include solution existence, uniqueness, and continuous 

dependence on the problem data: the inflow boundary value, the source function, the ab- 

sorption coefficient, and the scattering coefficient. Numerical results are presented to show 

that employing a delta-Eddington-type phase function with properly chosen parameters 

provides accurate simulation results for light propagation within highly forward-peaked 

scattering media. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The radiative transfer equation (RTE) arises in a wide variety of applications, such as astrophysics [22] , atmosphere and 

ocean [26,31] , heat transfer [20] , neutron transport [7,9] , optical molecular imaging [21,28] , and so on. Recently, there is 

much interest in analysis and numerical simulation of the RTE and its related inverse problems, motivated by applications 

in biomedical optics [2,3,5,11–15,23,25] . 

Photon propagation in biological or engineered tissues can be well described by the radiative transport equation (RTE). 

However, the direct solution of the RTE is computationally expensive because of the dimensionality of the equation and the 

complexity of the phase function. It is rather common in practice that the diffusion approximation is based upon to enable 

optical molecular tomographic techniques that reveal optically labeled molecular and cellular activities in vivo. A majority 

of such studies target small animal models of human diseases and 3D tissue engineering constructs of regenerative func- 

tionalities. Photon propagation in these media is strongly affected by scattering. When samples are not large, characteristic 

forward scattering is observable and responsible for substantial components in the measurement. Inspired by this obser- 

vation, delta-Eddington-type phase functions were proposed to model the underlying physics, simplify the solution of the 

RTE, and successfully applied in multiple applications. Therefore, it is desirable and timely to generalize this approach and 

establish its theoretical foundation. 

∗ Corresponding author. 

E-mail address: weimin-han@uiowa.edu (W. Han). 

http://dx.doi.org/10.1016/j.amc.2016.12.001 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.12.001&domain=pdf
mailto:weimin-han@uiowa.edu
http://dx.doi.org/10.1016/j.amc.2016.12.001


W. Han et al. / Applied Mathematics and Computation 300 (2017) 70–78 71 

The RTE for the complicated process of absorption and scattering of light within the biological medium is 

ω ·∇u + μt u − μs Su = f in X × �. (1.1) 

Here, X is a domain in R 

3 occupied by the biological medium and � is the unit sphere in R 

3 for the directions of the photon 

propagation. A generic point in X is denoted by x whereas a generic point in � is denoted by ω. The symbol ∇ stands for 

the gradient with respect to the spatial variable x . The unknown function u ( x , ω) is the angular flux at the point x in the 

direction ω. The RTE (1.1) contains two medium parameters, the total cross-section μt ( x ) and the scattering cross-section 

μs ( x ), that are related by μt = μa + μs with μa being the absorption cross-section. The integral operator S is given by the 

formula 

Su (x, ω) = 

∫ 
�

p( ̂  ω ·ω) u (x, ˆ ω ) d ̂  ω , (1.2) 

where the phase function p( ̂  ω ·ω) is non-negative and is normalized: ∫ 
�

p( ̂  ω ·ω) d ̂  ω = 1 , 

or equivalently, ∫ 1 

−1 

p(t) dt = 

1 

2 π
. 

The function f ( x , ω) represents a source density. 

The phase function p describes the scattering property of the biological medium. The precise form of the phase function 

is usually unknown for applications, and a benchmark choice is the Henyey–Greenstein phase function (cf. [16] ): 

p HG,g (t) = 

1 − g 2 

4 π
(
1 + g 2 − 2 gt 

)3 / 2 
, t := ˆ ω ·ω ∈ [ −1 , 1] , 

where the parameter g ∈ (−1 , 1) is the anisotropy factor of the scattering medium. For isotropic scattering, g = 0 ; for for- 

ward scattering, g > 0; and for backward scattering, g < 0. For applications in biomedical imaging, the value of g is typically 

between 0.9 and 0.95. For this range of the value of g , the corresponding integral operator (1.2) presents numerical singu- 

larity, bringing in additional difficulty in numerically solving the RTE problem. The biological tissue scatters light strongly 

in the forward direction, and so it is natural to approximately model the effect of the strongly forward scattering through 

the inclusion of a delta function in the phase function. In this paper, we consider the RTE problem with a general delta- 

Eddington-type phase function of the following form 

p(t) = 

1 

4 π
[ (1 − p 0 ) r(t) + 2 p 0 δ(1 − t) ] , (1.3) 

where p 0 ∈ [ −1 , 1] is the weighting factor measuring the anisotropy of the photon scattering, δ is the Dirac delta function, 

and r ( t ) represents a remainder part of the phase function which is smooth and slowly varying. For strongly forward peaked 

media, p 0 is less than but close to 1: 

1 − ε < p 0 < 1 , 

where ε > 0 is a small number. Physical considerations dictate that the remainder function r ( t ) satisfies the following 

condition: 

r(t) ≥ 0 , 
1 

2 

∫ 1 

−1 

r(t) dt = 1 . (1.4) 

The formula (1.3) includes as particular cases several phase functions proposed in the literature. We list some of them in 

the following. 

The transport approximation [10] corresponds to the choice r(t) = 1 , i.e., the phase function is the sum of a forward 

delta function and an isotropic scattering function. 

The delta-Eddington phase function [17] 

p dE (t) = 

1 

4 π

[
(1 − p 0 ) 

(
1 + 3 g ′ t 

)
+ 2 p 0 δ(1 − t) 

]
, (1.5) 

corresponds to the choice 

r(t) = 1 + 3 g ′ t, (1.6) 

where g ′ is an asymmetry factor of the phase function used to modulate the weakly anisotropic scattering. The phase func- 

tion (1.5) is a linear combination of a forward delta function and a weakly anisotropic scattering function. Formally, the 

transport approximation is a special case of the delta-Eddington phase function with g ′ = 0 . Note that the condition (1.4) re- 

duces to 

−1 

3 

≤ g ′ ≤ 1 

3 

. 
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