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a b s t r a c t 

We present a new algorithm for the computation of the inverse Abel transform, a problem 

which emerges in many areas of physics and engineering. We prove that the Legendre co- 

efficients of a given function coincide with the Fourier coefficients of a suitable periodic 

function associated with its Abel transform. This allows us to compute the Legendre co- 

efficients of the inverse Abel transform in an easy, fast and accurate way by means of a 

single Fast Fourier Transform. The algorithm is thus appropriate also for the inversion of 

Abel integrals given in terms of samples representing noisy measurements. Rigorous sta- 

bility estimates are proved and the accuracy of the algorithm is illustrated also by some 

numerical experiments. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The subject of this paper is the analysis and the numerical solution of the Abel integral equation of the first kind: 

g(x ) = (A f )(x ) 
. = 

∫ x 

0 

f (y ) √ 

x − y 
d y (0 � x � 1) . (1) 

In (1) , g ( x ) ∈ L 2 (0, 1) represents the known data function, and f ( x ) ∈ L 2 (0, 1) is the unknown function to be computed. 

We can assume, with no loss of generality, g(0) = 0 . Therefore, Eq. (1) defines a linear compact operator A : L 2 (0, 1) → 

L 2 (0, 1) [23] . Abel’s integral equation plays an important role in many areas of science. Its most extensive use is for the 

determination of the radial distribution of cylindrically symmetric physical quantities, e.g. the plasma emission coefficients, 

from line-of-sight integration measurements. In X-ray tomography, the object being analyzed is illuminated by parallel X-ray 

beams and an Abel equation of type (1) relates the intensity profile of the transmitted rays (the data function g ) to the 

object’s radial density profile (the unknown function f ) [2,9] . Abel inversion is widely used in plasma physics to obtain the 

electronic density from phase-shift maps obtained by laser interferometry [35] or radial emission patterns from observed 

plasma radiances [21,32] . Photoion and photoelectron imaging in molecular dynamics [17] , evaluation of mass density and 

velocity laws of stellar winds in astrophysics [13,30] , and atmospheric radio occultation signal analysis [28,37] are additional 

fields which frequently require the numerical solution of Abel’s equations of type (1) . 

The exact solution to (1) traces back to Abel’s memoir [1] (see also [12] ): 

f (y ) = 

1 

π

d 

d y 

∫ y 

0 

g(x ) √ 

y − x 
d x = 

1 

π

∫ y 

0 

g ′ ( x ) √ 

y − x 
d x ( with g( 0) = 0) , (2) 

and existence results are conveniently given in Ref. [23] for pairs of functions f and g belonging to a variety of functional 

spaces (e.g., Hölder spaces and Lebesgue spaces). 
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Actual difficulties arise when the Abel inversion has to be computed from input data which are noisy and finite in num- 

ber, as when the data represent experimental measurements. In this case Eq. (2) is often of little practical utility since it 

requires the numerical differentiation which tends to amplify the errors. The Abel inversion is in fact a (mildly) ill-posed 

problem since the solution does not depend continuously on the data: slight inaccuracies in the input data may lead to a 

solution very far from the true one. Stated in other words, since the operator A : L 2 (0, 1) → L 2 (0, 1) is compact, its inverse 

A 

−1 cannot be continuous in the L 2 -norm [23] . It is therefore crucial to set up numerical algorithms which yield a stable so- 

lution to problem (1) . For these reasons, various numerical methods for the inversion of Abel’s operator have been proposed. 

In Refs. [16,21,27] input data are represented through cubic spline and then the inverse Abel transformation is applied to 

get the solution. Iterative schemes [38] have been proved to be rather stable but are time-consuming. Inversion techniques 

based on the Fourier-Hankel transform are discussed in Refs. [5,29] . Numerical methods developed within regularization 

schemes suitable for problem (1) have also been presented [8,24] . The representation of input data and solution in various 

orthonormal basis in Hilbert spaces, coupled with the exact inversion of the Abel integral operator, has been exploited in 

Refs. [17,22,31] . The importance of using orthogonal polynomials for the stable solution of problem (1) has been recognized 

for a long time [33] . The approximation of the unknown solution by Jacobi polynomials [6] , Legendre polynomials [6,7] and 

Chebyshev polynomials [34,36] has been proposed for the inversion of the Abel integral operator. 

In this paper, we present a new procedure for the computation of the inverse Abel transform. In Section 2 we prove 

that the Legendre coefficients of the solution f ( x ) to problem (1) coincide with the Fourier coefficients of a suitable function 

associated with the data g ( x ). The role of noise is studied in Section 3 where we focus on the regularization of problem 

(1) within the spectral cut-off scheme and introduce a suitably regularized solution f (ε) 
N 

(x ) , ε being a parameter which rep- 

resents the amount of noise on the data. Rigorous stability estimates for the proposed solution are then proved in the same 

Section 3 , where we give upper bounds on the reconstruction error which depend on the smoothness properties of the 

solution and on the level of noise ε. The algorithm produced by this analysis results to be extremely simple and fast since 

the N coefficients of the regularized solution can be computed very efficiently by means of a single Fast Fourier Transform 

in O(N log N) time. This attractive feature makes the algorithm particularly suitable for the Abel inversion of functions rep- 

resented by samples, e.g., noisy experimental measurements, given on nonequispaced points of the Abel transform domain 

since the core of the computation can be simply performed by means of a nonuniform Fast Fourier Transform. Finally, in 

Section 4.1 we illustrate some numerical experiments which exemplify the theoretical analysis and give a taste of the sta- 

bility of the algorithm for the computation of the inverse Abel transform for solutions with different smoothness properties 

and various levels of noise on the data. 

2. Inversion of the Abel transform by Legendre expansion 

For convenience, let us define the following intervals of the real line: E � (0, 1), �
. = (−π, π) . Consider the shifted Leg- 

endre polynomials P n (x ) , which are defined by: 

P n (x ) = 

√ 

2 n + 1 P n (2 x − 1) , (3) 

where P n ( x ) denote the ordinary Legendre polynomials, defined by the generating function [20] : 

∞ ∑ 

n =0 

P n (x ) t n = 

(
1 − 2 xt + t 2 

)− 1 
2 
. (4) 

The shifted Legendre polynomials { P n (x ) } ∞ 

n =0 
form a complete orthonormal basis for L 2 ( E ). The ( shifted ) Legendre expansion 

of a function f ( x ) ∈ L 2 ( E ) reads: 

f (x ) = 

∞ ∑ 

n =0 

c n P n (x ) (x ∈ E) , (5) 

with coefficients c n = ( f, P n ) (where ( ·, ·) denotes the scalar product in L 2 ( E )): 

c n = 

∫ 1 

0 

f (x ) P n (x ) d x (n � 0) . (6) 

We can now prove the following theorem which connects the Legendre coefficients of a function f ( y ) with its Abel trans- 

form g ( x ). 

Theorem 1. Let g denote the Abel transform (1) of the function f ∈ L 2 ( E ) . Then the inverse Abel transform f = (A 

−1 g) can be 

written as: 

f (x ) = 

∞ ∑ 

n =0 

c n P n (x ) (x ∈ E) , (7) 

where c n = (−1) n 
√ 

2 n + 1 ˆ γn and the coefficients { ̂  γn } ∞ 

n =0 
coincide with the Fourier coefficients (with n ≥ 0 ) of the 2 π-periodic 

auxiliary function η( t ) (t ∈ R ) , whose restriction to the interval t ∈ [ −π, π) is given by 

η(t) 
. = 

sgn (t) 

2 π i 
e i t/ 2 g 

(
sin 

2 t 

2 

)
(t ∈ [ −π, π)) , (8) 
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