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In this paper, we develop and analyze a multiphysics discontinuous Galerkin method for 

a poroelasticity model, which describes the dynamics of poro-elastic materials under an 

applied mechanical force on the boundary. And we prove that the multiphysics discontin- 

uous Galerkin method is absolutely stable for all positive mesh size h . Also, we propose 

a time-stepping algorithm which decouples the reformulated poroelasticity model at each 

time step into two sub-problems, one of which is a generalized Stokes problem for the dis- 

placement vector field along with a pseudo-pressure and the other is a diffusion problem 

for the pseudo-pressure field. And we give the optimal order error estimates in the energy 

norm. Finally, we give the numerical examples to verify the theoretical results. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In recent years, several variations of finite element methods for poroelasticity model have been proposed which exhibit 

special convergence, conservation, and approximation properties (cf. [2,3] ). A poroelasticity material is a fluid-solid interac- 

tion system at pore scale and poromechanic is a branch of continuum mechanics and acoustics that studies the behavior of 

fluid-saturated porous materials. If the solid is an elastic material, then the subject of the study is known as poroelasticity. 

Poroelastic materials include soil, polymer gels, and medicine pills, just name a few, which not only exhibit an important 

state of matter found in a wide variety of mechanical, biomedical and chemical systems(cf. [5,6,14,15] and the references 

therein), but also possess some fascinating properties, in particular, they display thixotropy which means that they be- 

come fluid when agitated, but resolidify when resting. In [9,10,12] the authors proposed and analyzed a semi-discrete and 

a fully discrete mixed finite element method which simultaneously approximate the pressure and its gradient along with 

the displacement vector field. However, when the constrained specific storage coefficient κ0 = 0 , the CG/mixed method may 

exhibit a “locking phenomenon” in poroelasticity as explained in the [11] . To overcome the above difficulty and reveal the 

multi-physical process of the original poroelasticity model, we develop a multiphysics discontinuous Galerkin method for 

the poroelasticity model, which is a novel method and very different from the DG/mixed scheme of [11] . Discontinuous 

Galerkin method has the ability to deal with the discontinuity flexibly, and the finite element spaces do not need satisfy 

the so-called inf–sup condition. Also, discontinuous Galerkin method is easy to be adaptive and parrel. Due to the above 

obvious advantages, the discontinuous Galerkin method becomes an active research area in recent years (cf. [1,4,8,13] ). 
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In the work, we aim to design the multiphysics discontinuous Galerkin (DG) method, the key idea is to introduce some 

interior penalty terms in mixed forms of the proposed DG method and the main difficulty is to prove the discrete inf–

sup condition. To the end, we reformulate the poroelasticity model and decoupled (or coupled) the reformulated problem 

at each time step into two sub-problems – a generalized Stokes problem for the displacement vector field along with a 

pseudo-pressure and a diffusion problem for other pseudo-pressure field. 

The remainder of this paper is organized as follows. In Section 2 , we present a complete PDE model and its multiphysics 

reformulation, and introduce some new variables to change the forms of problems. In Section 3 , we define the bilinear 

forms and propose the multiphysics discontinuous Galerkin method. In Section 4 , we prove the coerciveness of the discrete 

bilinear form. Then, in Section 5 , we prove that the optimal order error estimates in the energy norm are established. 

Finally, we give some numerical tests to show the effective of the proposed approach and method, and there is no “locking 

phenomenon” in our numerical method. 

2. PDE model and its multiphysics reformulation 

The quasi-static poroelasticity model to be studied in this paper is given by 

−div σ (u ) + α∇p = f in �T : = � × (0 , T ) ⊂ R 

d × (0 , T ) , (2.1) 

(κ0 p + αdiv (u )) t + div v f = φ in �T , (2.2) 

where 

σ (u ) : = με(u ) + λdiv u I, ε(u ) : = 

1 

2 

(∇u + ∇u 

T ) , (2.3) 

v f : = − K 

μ f 

(∇p − ρ f g ) , (2.4) 

and u denotes the displacement vector of the solid and p denotes the pressure of the solvent, f is the body force, I denotes 

the d × d identity matrix and ε( u ) is the strain tensor. The parameters are Lam ́e constants λ, μ, the permeability tensor K , 

the solvent viscosity μf , Biot–Willis constant α, and the constrained specific storage coefficient κ0 . In addition, σ ( u ) is called 

the (effective) stress tensor, ̂ σ (u , p) := σ (u ) − αpI is the total stress tensor. v f is the volumetric solvent flux and (2.4) is the 

well-known Darcy ′ s law. We assume that ρ f �≡ 0 , which is a realistic assumption. 

To close the above system, suitable boundary and initial conditions must be prescribed. The following set of boundary 

and initial conditions are considered in this paper: ̂ σ (u , p) n = σ (u ) n − αpn = f 1 on ∂ �T := ∂ � × (0 , T ) , (2.5) 

v f · n = − K 

μ f 

(∇p − ρ f g ) · n = −φ1 on ∂�T , (2.6) 

u = u 0 , p = p 0 on � × { t = 0 } . (2.7) 

Now, we introduce new variables 

q : = div u , η : = κ0 p + αq, ξ : = αp − λq. 

It is easy to check that 

p = k 1 ξ + k 2 η, q = k 1 η − k 3 ξ , (2.8) 

where 

k 1 : = 

α

α2 + λκ0 

, k 2 : = 

λ

α2 + λκ0 

, k 3 : = 

κ0 

α2 + λκ0 

. (2.9) 

Then the system (2.1) –(2.7) can be written as 

−μdiv ε(u ) + ∇ξ = f in �T , (2.10) 

k 3 ξ + div u = k 1 η in �T , (2.11) 

ηt − 1 

μ f 

div [ K(∇(k 1 ξ + k 2 η) − ρ f g )] = φ in �T , (2.12) 

σ (u ) n − αpn = f 1 on ∂�T , (2.13) 

− K 

μ f 

(∇p − ρ f g ) · n = −φ1 on ∂�T , (2.14) 
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