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a b s t r a c t 

In this paper, by means of similarity transformations we study exact analytical solutions 

for a generalized nonlinear Schr ̈o dinger equation with variable coefficients. This equa- 

tion appears in literature describing the evolution of coherent light in a nonlinear Kerr 

medium, Bose–Einstein condensates phenomena and high intensity pulse propagation in 

optical fibers. By restricting the coefficients to satisfy Ermakov–Riccati systems with mul- 

tiparameter solutions, we present conditions for existence of explicit solutions with singu- 

larities and a family of oscillating periodic soliton-type solutions. Also, we show the exis- 

tence of bright-, dark- and Peregrine-type soliton solutions, and by means of a computer 

algebra system we exemplify the nontrivial dynamics of the solitary wave center of these 

solutions produced by our multiparameter approach. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The study of the nonlinear Schrödinger equation (NLS) with real potential V 

iψ t = −1 

2 

�ψ + V ( x, t) ψ + λ( x , t) | ψ | 2 s ψ , ψ (0 , x ) = ϕ( x ) , x ∈ R 

n , � = 

n ∑ 

j=1 

∂ x j x j (1.1) 

has been studied extensively not only for its role in physics, such as in Bose–Einstein condensates and non- 

linear optics, but also for its mathematical complexity (for a review of the several results available see 

[1,3,4,12,13,18,19,27,32,33,47,51,52,58,63,68] ). For the case λ = −1 , V ≡ 0, and ns < 2 (subcritical case) Weinstein [65] proved 

that if ϕ ∈ H 

1 , then ψ exists globally in H 

1 . It is also known (see [13,21,58] for a complete review) that NLS for critical 

( ns = 2 ) and supercritical ( ns > 2) cases present solutions that become singular in a finite time in L p for some finite p . In 

[22] singular solutions of the subcritical NLS were presented in L p . 

In [10] it was proved that if ϕ ∈ � = { f ∈ H 

1 (R 

n ) : x → | x | f ( x ) ∈ L 2 (R 

n ) } , V ( x, t ) is real, locally bounded in time and 

subquadratic in space, and λ ∈ R , then the solution of the Cauchy initial value problem exists globally in �, provided that 

s < 2/ n or s ≥ 2/ n and λ ≥ 0. Also, in [10] it was shown that if V ( x, t) = b(t) x 2 
j 
, b(t) ∈ C(R ; R ) in (1.1) , then there exist 

blow-up solutions if λ < 0 and s = 2 /n. The proof uses the generalized Melher’s formula introduced in [15] . In [44] and 

[59] a generalized pseudoconformal transformation (lens transform in optics [60] ) was presented. In this paper, as a first 
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main result we will use a generalized lens transformation to construct solutions with finite-time blow-up in L p norm for 

1 ≤ p ≤ ∞ of the general variable coefficient nonlinear Schrödinger: 

iψ t = −a ( t ) ψ xx + (b ( t ) x 2 − f ( t ) x + G (t)) ψ − ic ( t ) xψ x − id ( t ) ψ + ig ( t ) ψ x + h ( t ) | ψ | 2 s ψ. (1.2) 

In modern nonlinear sciences some of the most important models are the variable coefficient nonlinear Schrödinger-type 

ones. Applications include long distance optical communications, optical fibers and plasma physics, see [4,5,7–9,11,14,17,24–

26,29,39,43,45,46,49,54,55,62,64,67] and references therein. 

If we make a (t) = �/ 4 πn 0 , � being the wavelength of the optical source generating the beam, and choose c(t) = g(t) = 

0 , then (1.2) models a beam propagation inside of a planar graded-index nonlinear waveguide amplifier with quadratic 

refractive index represented by b ( t ) x 2 − f ( t ) x + G (t) , and h ( t ) represents a Kerr-type nonlinearity of the waveguide amplifier, 

while d ( t ) represents the gain coefficient. If b ( t ) > 0 [45] (resp. b ( t ) < 0, see [49] ) in the low-intensity limit, the graded-index 

waveguide acts as a linear defocusing (focusing) lens. 

Depending on the selections of the coefficients in Eq. (1.2) , the applications vary in very specific problems (see [62] and 

references therein): 

• Bose–Einstein condensates [27] : b ( ·) 	 = 0, a , h constants and other coefficients are zero. 

• Dispersion-managed optical fibers and soliton lasers [29,54,55] : a ( ·), h ( ·), d ( ·) 	 = 0 are respectively dispersion, nonlinearity 

and amplification, and the other coefficients are zero. a ( ·) and h ( ·) can be periodic as well, see [2,40] . 

• Pulse dynamics in the dispersion-managed fibers [39] : h ( ·) 	 = 0, a is a constant and other coefficients are zero. 

In this paper to obtain the main results we use a fundamental approach consisting of the use of similarity transfor- 

mations and the solutions of Riccati Ermakov systems with several parameters inspired by the work in [38] . Similarity 

transformations have been a very popular strategy in nonlinear optics since the lens transform presented by Talanov [60] ; 

extensions and applications of this approach have been presented by Rypdal and Rasmussen [50–53] , see also more recent 

contributions by [44,59] . Also for related work on transformations using Lie groups and Lie algebras we refer the reader 

to [6,23,42,48,66] . Applications include nonlinear optics, Bose–Einstein condensates, integrability of NLS and quantum me- 

chanics, see for example [5,6,10,34] and references therein. Marhic in 1978 introduced (probably for the first time) a one- 

parameter { α(0)} family of solutions for the linear Schrödinger equation of the one-dimensional harmonic oscillator; the use 

of an explicit formulation (classical Melher’s formula [20,41] ) for the propagator was fundamental. The solutions presented 

by Marhic constituted a generalization of the original Schrödinger wave packet with oscillating width. Also, in [15] a gener- 

alized Melher’s formula for a general linear Schrödinger equation of the one-dimensional generalized harmonic oscillator of 

the form (1.2) with h (t) = 0 was presented. For the latter case in [31,35] , multiparameter solutions in the spirit of Marhic 

in [38] have been presented. The parameters for the Riccati system arose originally in the process of proving convergence 

to the initial data for the Cauchy initial value problem (1.2) with h (t) = 0 and in the process of finding a general solution of 

a Riccati system [56] . Ermakov systems with solutions containing parameters [31] have been used successfully to construct 

solutions for the generalized harmonic oscillator with a hidden symmetry [35] , and they have also been used to present 

Galilei transformation, pseudoconformal transformation and others in a unified manner, see [35] . More recently they have 

been used in [36] to show spiral and breathing solutions and solutions with bending for the paraxial wave equation. In 

this paper, as a second main result we introduce a family of Schrödinger equations presenting periodic soliton solutions by 

using multiparameter solutions for Riccati–Ermakov systems. Further, as a third main result we show that these parameters 

provide a control on the dynamics of solutions for equations of the form (1.2) . These results should deserve numerical and 

experimental studies. 

This paper is organized as follows: In Section 2 , as an application of a generalized lens transformation and multipa- 

rameter solutions for Riccati systems we present conditions to obtain solutions with singularity in finite time in L p norm, 

1 ≤ p ≤ ∞ for (1.2) . Also, we show that through this more general parameter approach we can obtain the same L ∞ solu- 

tions with finite-time blow-up for standard NLS presented in [15] and finite-time blow-up for NLS with quadratic potential. 

In Section 3 , we present a family of soliton solutions for (1.2) presenting bright- and dark-type solitons; this family includes 

the standard NLS models. This family has multiparameter solutions coming from solutions of a related Ermakov system, 

extending the results presented in [57] , where a Riccati system was used. By the use of these parameters the dynamics of 

periodic solutions for (1.2) show bending properties, see Figs. 1 and 2 . In Section 4 , again, as an application of generalized 

lens transformations and an alternative approach to solve the Riccati system (A .1) –(A .6) we present how the parameters pro- 

vide us with a control on the center axis of the solution of bright and dark soliton solutions for special coefficients in (1.2) . 

Figs. 3 and 4 show the bending propagation of the solutions after introducing parameters, extending the results presented 

in [36,57] to (1.2) . Also we show that it is possible to construct a transformation that reduces (1.2) , with a (t) = l 0 = ±1 and 

G (t) = 0 , to standard NLS with convenient initial data ( Lemma 4 ) in order to assure existence and uniqueness of classical 

solutions ( Proposition 1 ). As an application we show how the dynamics of the Peregrine soliton solutions of the nonlinear 

Schrödinger equation consider change when the dissipation, d ( t ), and the nonlinear term, h ( t ) change, see Figs. 5 –8 . We 

have also prepared a Mathematica file as supplemental material where all the solutions for this section are verified. Finally, 

in Appendix A , we recall the main tools we have used for our results. These tools are a solution with multiparameters of 

the Riccati system (A .1) –(A .6) and a modification of the transformation introduced in [59] ; we have introduced an extra 

parameter l 0 = ±1 in order to use standard solutions for Peregrine-type soliton solutions. Also a 2D version of a generalized 
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