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a b s t r a c t 

Markov random fields (MRF) underpin the solution to many problems in computational 

neuroscience. However, how the inference for MRF could be implemented with neural net- 

work is still an important open question. In this paper, we build the relationship between 

inference equation of MRF and the dynamic equation of the Hopfield network with proba- 

bility coding. We prove that the membrane potential in the Hopfield network varying with 

respect to time can implement marginal probabilities inference on binary MRF. Theoret- 

ical analysis and experimental results show that our neural network can get comparable 

results as that of loopy belief propagation (LBP). 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Markov random fields (MRF) are a kind of undirected probabilistic graphical models [1] , which have been widely used 

in various fields, such as computer vision [2,3] , magnetic resonance imaging [4,5] and computational neuroscience [6,7] . In 

neuroscience, MRF have been proved to be extremely useful in explaining some physiological and psychological experiments 

[6,7] . Despite this, an important open question is how the inference for MRF could be implemented with neural network 

or neural circuit. Solving this problem is of great importance to both neuroscience and computer science. For one thing, it 

would help us to understand how human brain performs inference. For another, a brain-like machine could be developed to 

imitate some of the capabilities of human brain. 

Recently, researchers attempt to build the relationship between inference equation of probabilistic graphical models and 

dynamic equation of neural network and neural circuits. Rao [8,9] proves that the dynamic equation of recurrent neural 

circuit can implement posterior probabilities inference on a hidden Markov model, under the condition that the firing rate 

of neuron is proportional to the log of posterior probabilities. Ott and Stoop [7] propose that the Hopfield network is able 

to implement belief propagation algorithm of binary MRF. However, this method suffers from two shortcomings. Firstly, 

they do not explain what the dynamics of spiking neuron in Hopfield networks represents. Secondly, the neurons in their 

network must have specially initialized messages, which is implausible for human brain [7] . 

In this paper, we build the relationship between inference equation of MRF and the dynamic equation of the Hopfield 

network with probability coding. We show that the membrane potential of neuron in the Hopfield network represents 

the difference between the probabilities for two states. What is more, we prove that the membrane potential in the Hop- 

field network varying with respect to time can also implement marginal probabilities inference on binary MRF. The neural 
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Fig. 1. A pairwise Markov network. 

network does not need specially initialized messages when performing inference. Experiments demonstrate that recurrent 

neural circuits can get comparable results as that of loopy belief propagation (LBP). 

2. Preliminaries 

In this section, we briefly review Markov random field and an approximate inference method named LBP. 

2.1. Markov random field 

MRF are a kind of undirected probabilistic graphical model and a joint distribution P ( x 1 , x 2 , . . . , x n ) is defined on the 

graph [1] . The joint distribution can be factorized into a product of potential functions according to the graph [10] . As 

illustrated in Fig. 1 , for this MRF, P ( x 1 , x 2 , . . . , x n ) has the form: 

P ( x 1 , x 2 , . . . , x n ) = 

1 
Z 

∏ 

( i, j ) ∈ E 
ψ i j 

(
x i , x j 

) ∏ 

i ∈ V 
ψ i ( x i ) , (1) 

where V represents the set of nodes and E represents the set of edges. ψ i ( x i ) and ψ ij ( x i , x j ) are the unary and pairwise po- 

tential functions, respectively. Note that for high-order MRF, potential functions can be defined on more than two variables. 

Z is the partition function, which is a normalized constant, and Z = 

∑ 

x 1 , x 2 , ... x n 

∏ 

( i, j ) ∈ E ψ i j ( x i , x j ) 
∏ 

i ∈ V ψ i ( x i ) . Eq. (1) also can 

be reformulated as: 

P ( x 1 , x 2 , . . . x n ) = 

1 
Z 

exp 

( ∑ 

( i, j ) ∈ E 
θi j 

(
x i , x j 

)
+ 

∑ 

i ∈ V 
θi ( x i ) 

)
, (2) 

where θi j ( x i , x j ) = ln ψ i j ( x i , x j ) and θi ( x i ) = ln ψ i ( x i ) . Similar to [7] , we assume that θi j ( x i , x j ) = θi j x i x j and θi ( x i ) = θi x i , 

where θ ij and θ i are constants. 

2.2. Loopy belief propagation algorithm 

The inference problem of MRF is to calculate the marginal probability P ( x i ), which is given by: 

P ( x i ) = 

∑ 

x / x i 

P ( x 1 , x 2 , . . . x n ) . (3) 

The above equation can be computed directly with variable elimination. However, it has been proved that exact inference 

of MRF is an NP-complete problem [1,11] . An efficient approximate inference algorithm is LBP, which has been indicated to 

be a probable way to perform inference for human brain by physiological and psychological experiments [8,12,13] . The main 

principles of LBP lie in converting the inference problem to the problem of minimizing the Bethe free energy [14,15] , which 

is then solved by an iterative optimization algorithm. In each iteration, every node updates its beliefs (marginal probability) 

according to the information of all the neighboring nodes. These informations are called message. To be specific, the message 

in the t + 1 iteration is [15] : 

m 

t+1 
i → j 

(
x j 

)
∝ 

∑ 

x i 

ψ i ( x i ) ψ i j 

(
x i , x j 

) ∏ 

k ∈ N ( i ) \ j 
m 

t 
k → i ( x i ) , (4) 

where m 

t+1 
i → j 

( x j ) represents the message sent from node i to node j in the t + 1 iteration. Note that the message is related 

to the state x j . N ( i ) \ j represents all neighboring nodes of node i expect node j . We use ∝ to normalize the message and keep ∑ 

x j 

m 

t+1 
i → j 

( x j ) = 1 . When all the messages converge to the fixed points, the approximate marginal probability P ( x i ) is: 

P i ( x i ) ∝ ψ i ( x i ) 
∏ 

j∈ N ( i ) 
m 

∞ 

j→ i ( x i ) . (5) 
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