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a b s t r a c t 

Based on implementation of the quasi-minimal residual (QMR) and biconjugate A - 

orthogonal residual (BiCOR) method, a new Krylov subspace method is presented for solv- 

ing complex symmetric linear systems. The new method can be combined with arbitrary 

symmetric preconditioners. The preconditioned modified Hermitian and Skew-Hermitian 

splitting (PMHSS) preconditioner is used to accelerate the convergence rate of this method. 

Numerical experiments indicate that the proposed method and its preconditioned version 

are efficient and robust, in comparison with other Krylov subspace methods. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

When partial differential equations such as the Helmholtz and Maxwell equations that involve complex coefficient func- 

tions or complex boundary conditions are discretized, we need to solve large linear systems 

Ax = b, (1) 

where A is an N × N complex symmetric nonsingular matrix and x, b ∈ C 

N . Complex symmetric linear systems also arise 

from other various physical problems, such as electromagnetic scattering problem [1] , molecular scattering [2] , structural 

dynamics [3] and quantum mechanics [4] . When huge memory is a concern, the direct method is no longer practical to 

employ, and then Krylov subspace methods are considered as one class of the important and efficient techniques. van der 

Vorst and Mellissen [5] developed the conjugate orthogonal conjugate gradient (COCG) method based on conjugate orthog- 

onal relation, which needs only about half the amount of work per iteration as the biconjugate gradient (BiCG) method 

[6] . Freund [7] proposed a conjugate gradient-type method with quasi-minimal residual (QMR) [8] based on the Lanczos 

recursion. Bunse-Gerstner and Stöver [9] developed another conjugate gradient-type method, which is based on unitary 

equivalence transformations of complex symmetric coefficient matrix A to symmetric tridiagonal form. By extending the 

conjugate residual method [10] to nonsymmetric linear systems, Sogabe et al. [11] presented the BiCR method that pos- 

sesses smoother convergence behavior compared to the BiCG method for real nonsymmetric linear systems. By applying 

the BiCR method to complex symmetric linear systems, Sogabe and Zhang [12] derived the conjugate orthogonal conjugate 

residual (COCR) method which exhibits smoother convergence behavior than the COCG method. 

The SYMMLQ and MINRES methods [13] are the standard conjugate gradient-type Krylov subspace methods for solv- 

ing symmetric indefinite linear systems. However, when preconditioning is implemented, the preconditioner need to be 
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symmetric positive definite, which limits the choice of possible preconditioners for SYMMLQ and MINRES methods when 

the coefficient matrix is highly indefinite. To remedy this difficult, Freund and Nachtigal [14] presented a symmetric quasi- 

minimal residual (SQMR) method that can be combined with arbitrary symmetric preconditioner. Note that the SQMR 

method is derived from the coupled two-term QMR algorithm [15,16] and the BiCG method. Recently, Jing et al. [17] and Car- 

pentieri et al. [18] explored a biconjugate A -orthogonal residual (BiCOR) method based on biconjugate A -orthonormalization 

process. To enhance stability and convergence rate of the BiCOR method, some product-type iterative methods, including 

CORS [17,18] , BiCORSTAB [17,18] , BiCORSTAB2 [19] , GPBiCOR [20] , QMRCORSTAB [21] and GCORS [22] methods, are designed. 

Numerical results from scientific and engineering problems show that these methods are competitive with or superior to 

other Krylov subspace methods. Inspired by the advantage of the BiCOR family methods and the SQMR method, we derive 

a new iterative method for solving complex symmetric linear system by using the connection of the QMR method and the 

BiCOR method. We abbreviate the resulting method to the SQMOR method. The new method can also be combined with 

arbitraly symmetric preconditioners and competitive with or superior to the SQMR method in many cases, especially highly 

indefinite complex symmetric linear systems. 

Bai et al. [23,24] presented the Hermitian and Skew-Hermitian splitting (HSS) method and its modification (called MHSS 

method) for solving non-Hermitian positive definite linear systems, and proved that the HSS method and the MHSS method 

converge unconditionally. To accelerate convergence rate of the MHSS iteration method, Bai et al. [25] developed the pre- 

conditioned MHSS (PMHSS) method. Numerical experiments demonstrate that the PMHSS method and the GMRES method 

with the PMHSS preconditioner embody meshsize-independent and parameter-insensitive convergence behavior. To improve 

the performance of the SQMOR method, we can employ the PMHSS preconditioner. Numerical experiments show that the 

SQMOR method with the PMHSS preconditioner converges in considerably fewer iterations as compared with other precon- 

ditioners, such as symmetric successive overrelaxation (SSOR) [26] preconditioner. 

The remainder of the paper is organized as follows. In Section 2 , we describe an implementation of the QMR method 

based on the BiCOR method and derive the QMRBiCOR method by using connection of the QMR method and the BiCOR 

method. In Section 3 , we propose the SQMOR method and describe the SQMOR method with the PMHSS preconditioner. 

Numerical experiments are given in Section 4 to show the effectiveness of the SQMOR method and the preconditioned 

SQMOR method. Finally, we make some conclusions and remarks in Section 5 . 

Throughout this paper, we use the follow notations. Let the overbar “–” denote the conjugate complex of a scalar, vector 

or matrix, Z T and Z H denote the transpose and the conjugate transpose of a vector or matrix Z , respectively. The Krylov 

subspace K m 

(A, v ) generated by a matrix A ∈ C 

N×N and a vector v ∈ C 

N is defined as K m 

(A, v ) = span (v , A v , . . . , A 

m −1 v ) . 

2. The QMRBiCOR method 

The BiCOR method often converges faster and smoother than the BiCG [6] method in many practical problems, but it still 

shows an irregular convergence behavior in the residual norm. For convenience, the BiCOR [17,18] method is described as in 

Algorithm 1 . 

Algorithm 1 The BiCOR method. 

1: Compute r 0 = b − Ax 0 for some initial guess x 0 . 

2: Choose r ∗
0 

= p(A ) r 0 such that (r ∗
0 
, Ar 0 ) � = 0 , where p(t) is a polynomial in t (for example, r ∗

0 
= Ar 0 ) . 

3: Set p 0 = r 0 , p ∗
0 

= r ∗
0 
, q 0 = Ap 0 , q 

∗
0 

= A 

H p ∗
0 
, ̂  r 0 = Ar 0 , ρ0 = (r ∗

0 
, ̂  r 0 ) . 

4: for j = 1 , 2 , . . . do 

5: σ j = (q ∗
j 
, q j ) 

6: α j = 

ρ j 

σ j 
7: x j+1 = x j + α j p j 
8: r j+1 = r j − α j q j 
9: x ∗

j+1 
= x ∗

j 
+ α j p 

∗
j 

10: r ∗
j+1 

= r ∗
j 
− α j q 

∗
j 

11: ̂ r j+1 = Ar j+1 

12: ρ j+1 = (r ∗
j+1 

, ̂  r j+1 ) 

13: β j+1 = 

ρ j+1 

ρ j 

14: p j+1 = r j+1 + β j+1 p j 

15: p ∗
j+1 

= r ∗
j+1 

+ β j+1 p j 
16: q j+1 = ̂

 r j+1 + β j+1 q j 
17: q ∗

j+1 
= A 

H p ∗
j+1 

18: end for 
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