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a b s t r a c t 

The problem of plane waves propagation in the nematic elastomers has been investi- 

gated. The phase velocity corresponding to primary ( P ) and secondary waves ( S ) in the 

anisotropic nematic elastomers are complex and depend on their angles of propagation. 

The phase velocity and the attenuation coefficients for these waves are obtained analyti- 

cally and numerically for a particular model. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Nematic elastomers are materials of simultaneous combination of elastic properties of rubbers with anisotropy of liquid 

crystals. Such materials consist of the networks of elastic solid chains formed by the cross linking of nematic crystalline 

molecules called mesogens as the elements of their main-chains and pendant side-groups. The stress on the polymer net- 

work influences the nematic order and the changes in the orientational order affect the mechanical shape of the elastomer. 

Interplay between elastic and orientational changes is responsible for many fascinating properties of such materials which 

make them different from the classical elastic solids and liquid crystals. Liquid crystalline elastomers (LCE) [1–5] has many 

applications in the fields of mechanical actuators (artificial muscles), optics and coatings of materials, which can dissipate 

mechanical energy. 

The electroclinic (EC) effect of an electro-optical coupling is observed in liquid crystals, which consists in the rotation of 

the optical axis about an electric field, perpendicular to the optical axis itself. The tilt is linear in the electric field and the EC 

coefficient is a property of the material. Greco and Ferrarini [6] derived the molecular expressions for the EC coefficient and 

a computational methodology that had allowed its calculations on the basis of the molecular structure. Finkelmann et al. 

[7] synthesized side chain nematic polymer networks, performed differential scanning calorimetry (DSC), X-ray, birefrin- 

gence and thermo-mechanical characterizations, and obtained the linear moduli from stress-strain measurements. Selinger 

et al. [8] discussed a theory for the isotropic-nematic transition in liquid-crystalline elastomers through a variation on Lan- 

dau theory. DeSimone and Dolzmann [9] analyzed the soft deformation paths and domain patterns in nematic elastomers 

through the minimization of a nonconvex free-energy. Anderson et al. [10] studied a continuum theory for the mechanical 

behavior of rubber materials. Teixeira and Warner [11] investigated and discussed analytically and numerically the dynamics 

of how a nematic elastomer with an anisotropic rubber responds elastically and orientationally to an imposed strain. They 

obtained different modes decay with either two distinct or with the same exponential laws depending respectively, on 

whether there is or there is not complete reorientation of the molecular long axes. Nematic elastomers [12] exhibited the 

remarkable phenomenon of soft or semisoft elasticity in which the effective shear modulus for shears in planes containing 

the anisotropic axis, respectively, vanishes or is very small. Problems of nematic elastomers are also available in Uchida 
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[13] , Selinger et al. [14] , DeSimone and Teresi [15] , Ericksen [16,17] , Leslie [18,19] , Weilepp and Brand [20] , Paolo Cermelli 

et al. [21] , Agrawal et al. [22] , monograph of Warner and Terentjev [23] , Cmok et al. [24] and Petelin and Copic [25] . 

The problem of waves and vibration is an important area of research. Wu et al. [26] attempted the problem of the 

analysis of phase velocity and polarization features for elastic waves in tilted transverse isotropy ( TTI ) media. They derived 

the approximate phase velocity for qP , qSV and qSH waves in such media based on the Thomson dimensionless anisotropic 

parameters and weak anisotropy approximation theory. Singh and Zorammuana [27] studied the problem of incident 

longitudinal wave at a fiber-reinforced thermoelastic half-space and obtained the reflection and energy ratios of reflected 

elastic waves. Singh and Bijarnia [28] investigated the problem of the propagation of plane waves in anisotropic two 

temperature generalized thermoelasticity. Yang et al. [29] discussed the problem of Rayleigh wave propagation in nematic 

elastomers and used the viscoelastic theory to find the dispersion and attenuation properties of the Rayleigh waves. 

Singh and Singh [30] explained the effect of corrugation on incident qSV-waves in pre-stressed elastic half-spaces thereby 

obtaining the reflection and transmission coefficients. Singh [31] also obtained the reflection and transmission coefficients of 

the reflected and transmitted waves from a plane interface between two dissimilar half-spaces of thermo-elastic materials 

with void. Fradkin et al. [32] developed the spectral and polarization properties of acoustic waves propagating in nematic 

liquid-crystalline rubber materials. The perturbation of phase speed and attenuation of the waves for the problems of 

nematic coating has been studied by Zakharov [33,34] and Zakharov and Kaptsov [35] . Singh [36] obtained the reflection 

coefficients of the incident qP and qSV -waves from a free surface of nematic elastomer half-space using appropriate 

boundary conditions. Terentjev et al. [37] developed a theory of elastic waves in oriented monodomain nematic elastomers 

using the Leslie–Ericksen theory of anisotropic viscous dissipation in a nematic liquid. 

In this paper, we discussed the problem of harmonic waves in the anisotropic nematic elastomer and obtained their 

phase velocity. These phase velocities are complex and depend on their angles of propagation. The phase velocity and their 

attenuation coefficients of these waves are computed numerically for a particular elastomer. 

2. Basic equations 

The elastic potential energy density in nematic solid takes the form [37] as 

F = C 1 ( n · ε · n ) 2 + 2 C 2 tr[ e ]( n · ε · n ) + C 3 (tr[ e ]) 2 + 2 C 4 ( n × ε × n ) 2 

+ 4 C 5 (n × ( ε · n )) 2 + 

D 1 

2 

( n × �) 2 + D 2 n · ε·( n × �) , (1) 

where the Frank elastic energy describes the non-uniform directors is not included due to the assumption of uniform direc- 

tor rotations in nematic elastomers, � = � − (n × δn ) is an independent rotational variable, δn is a small variation in the 

undistorted nematic director, n · � = (1 / 2) curl u is the local rotation vector, ( n × δn ) are director rotations, εi j = e i j − (1 / 3) 

tr[ e ] δi j , (i, j = 1 , 2 , 3) is the traceless part of linear symmetric strain, e i j = (1 / 2)(δ j u i + δi u j ) , C i are elastic constants and 

D 1 , D 2 are coupling constants. 

Using the Leslie–Ericksen theory [16–19] of anisotropic viscous dissipation in nematic liquid, the Rayleigh dissipation 

function (entropy production density) can be written in the quadratic form of corresponding velocities [32] as 

T ˙ s = A 1 ( n · ˙ ε · n ) 2 + 2 A 2 tr[ ̇ e ]( n · ˙ ε · n ) + A 3 (tr[ ̇ e ]) 2 + 2 A 4 ( n × ˙ ε × n ) 2 

+ 4 A 5 [ n × ( ̇ ε · n )] 2 + 

1 

2 

γ1 ( n × ˙ �) 2 + γ2 n · ˙ ε · ( n × ˙ �) , (2) 

where A i are viscous coefficients. This equation describes two types of dissipation, by shear flow and by rotation of the 

director, and vanishes for rigid rotations. 

The equations of motion of viscous nematic solid in the absence of the effects of Frank elasticity on the director gradient 

are given as [32] 

∇ · σ = ρü , (3) 

0 = n × [(D 1 + γ1 δt ) n × � + (D 2 + γ2 δt ) n · ε] , (4) 

where u = (u 1 , u 2 , u 3 ) and the second equation is the balance of torques. 

The components of the viscoelastic symmetric stress tensor with the choice of the coordinate x 3 -axis to lie in the direc- 

tion of the undistorted director, n are 

τ11 = (1 + τR ∂ t )(c 11 ε11 + c 12 ε22 + c 13 ε33 ) , 

τ22 = (1 + τR ∂ t )(c 12 ε11 + c 11 ε22 + c 13 ε33 ) , 

τ33 = (1 + τR ∂ t )(c 13 ε11 + c 13 ε22 + c 33 ε33 ) , 

τ12 = τ21 = 2(1 + τR ∂ t ) c 66 ε12 , 

τ13 = 2(1 + τR ∂ t ) c 44 ε13 − 1 

2 

D 1 (1 + τ2 ∂ t )	2 , 
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