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a b s t r a c t 

Using some recent results on subperiodic trigonometric interpolation and quadrature, and 

the theory of admissible meshes for multivariate polynomial approximation, we study 

product Gaussian quadrature, hyperinterpolation and interpolation on some regions of S d , 

d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles 

defined on S 2 by longitude and (co)latitude (geographic rectangles). We provide the corre- 

sponding Matlab codes and discuss several numerical examples on S 2 . 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this work we study new rules for numerical cubature and define new algorithms to determine good point sets for 

interpolation on some regions of the unit sphere S d ⊂ R 

d+1 with S 
d = { x ∈ R 

d+1 : ‖ x ‖ 2 = 1 } , being ‖·‖ 2 the euclidean norm 

in R 

d+1 . 

Many cubature and interpolation point sets are known on the whole sphere. Well-known sets are the so-called spherical 

L-designs , introduced by Delsarte et al. [12] , that are cubature rules with a fixed algebraic degree of precision and equal 

weights. Low-cardinality spherical designs (in particular close to the minimal ones) are the most interesting from the com- 

putational point of view, see e.g., [38] and references therein. Reimer in [30] and Sloan and Womersley in [32,33] , studied 

the so called extremal points , determining good points for interpolation and quadrature; for a survey on this topic, see [22] . 

Later, Hesse and Womersley in [23] studied numerical integration over caps in S 
d giving regularity results and a lower 

bound on the cardinality of rules with positive nodes and a certain degree of exactness n . Moreover, they provided rules 

that have O ( n d ) points and degree of exactness n . In particular, exploiting symmetry they presented a rule for caps of S 2 that 

has n 2 / 2 + O(n ) points. Using a different approach, Mhaskar showed in [27] , under some mild requirements, the existence 

of certain cubature rules having scattered data as nodes, on domains such as spherical caps and spherical collars. In [28] , 

he generalized these results to more general compact sets of the sphere. 

In [2] Beckmann et al. studied integration over spherical triangles providing numerical quadrature rules via certain re- 

producing kernels techniques. 

In this paper, we study cubature rules of product Gaussian type on regions of S d that we will call “geographic rectangles”, 

with caps and collars (also called zones) as special cases on S 
2 . In particular we will determine cubature rules that are 

exact on all algebraic polynomials of total degree not greater than n , by using “subperiodic” trigonometric Gaussian rules, 

that are rules with n + 1 angular nodes, exact on trigonometric polynomials of degree not greater than n on subintervals of 
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the period, [ α, β] ⊆ [0, 2 π ] (see [8–11] ). We show the quality of the cubature rules by numerical tests on some examples 

with integrands on S 
2 and S 

4 . 

Then, we study function approximation on such regions of the sphere. The availability of algebraic cubature formulas 

with positive weights, gives the possibility of constructing total-degree hyperinterpolation polynomials, that are ultimately 

truncated and discretized orthogonal polynomial expansions. Such a technique was introduced by Sloan in the seminal paper 

[31] , and then developed in various contexts, as a valid alternative to polynomial interpolation; see, e.g., [20,21,34] and 

references therein. Orthogonal polynomials on the relevant regions, which are a key ingredient of hyperinterpolation, are 

here computed by numerical linear algebra methods (consecutive QR factorizations of weighted Vandermonde matrices). 

Such a connection with hyperinterpolation on regions of the sphere is one of the main motivations to construct cubature 

formulas that are exact on total-degree polynomials. Indeed, concerning pure cubature, some preliminary numerical experi- 

ments seem to suggest that near-exactness (say, with an error not far from machine precision) can be obtained also by the 

product Gauss–Legendre quadrature in the angular variables, and even that a subsampling phenomenon can arise (provided 

that the angular intervals are sufficiently small). Such numerical observations, that go beyond the scope of the present pa- 

per, deserve in any case further deepening, as well as a comprehensive future study from both the computational and the 

theoretical sides. 

On the other hand, the recently developed theory of subperiodic trigonometric interpolation, cf. [5] , allows us to con- 

struct Weakly Admissible Meshes (shortened as WAMs) on geographic rectangles. The theory of WAMs, which are essentially 

special sequences of finite norming sets for polynomial spaces, has been introduced by Calvi and Levenberg in the semi- 

nal paper [7] , and has been developed by various researchers in the last years; cf., e.g., [4,24,29] . In the present context, 

product-type WAMs on geographic rectangles are straightforward to compute for any degree, and can be used directly for 

least-squares approximation of continuous functions (near-optimal in the uniform norm). Furthermore, by the algorithms 

described in [35] , we extract from such WAMs the so called Approximate Fekete Points and Discrete Leja Points . Both these 

point sets are good for polynomial interpolation, since they are asymptotically distributed as the Fekete points of the region 

and enjoy a slowly increasing Lebesgue constant; cf., e.g., [3] . 

All the Matlab codes used for the numerical experiments are available at the web site [6] . 

2. Some basic definitions and results 

As preliminaries, it is important to give a quick glance to some well-known facts that will be important in the next 

sections. We will denote by P n (�) the space of he restrictions to � of the algebraic polynomials of total degree at most n 

in R 

d+1 . A standard parameterization of the sphere S d is provided by generalized spherical coordinates as 

x k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cos (θd ) ·
∏ d−1 

j=1 sin (θ j ) , k = 1 , 

sin (θd ) ·
∏ d−1 

j=1 sin (θ j ) , k = 2 , 

cos (θd+2 −k ) ·
∏ d+1 −k 

j=1 sin (θ j ) , k = 3 , . . . , d + 1 

(1) 

with the notation 

∏ 0 
j=1 sin (θ j ) ≡ 1 . A classical choice in the range of the angles is θd ∈ [0, 2 π ) and θ k ∈ [0, π ] for k = 

1 , . . . , d − 1 . 

We point out that depending on the authors this parameterization may change. Independently of the choice of the range 

of the angles, the surface measure is expressed as 

dμ( x ) = 

d−1 ∏ 

k =1 

sin 

d−k (θk ) dθk . 

We will denote by ξ = ξ (θ1 , . . . , θd ) the transformation from generalized spherical coordinates to cartesian coordinates. 

In the case d = 2 , setting θ := θ1 , φ := θ2 , we have in particular the usual spherical coordinates transformation ξ = 

ξ (θ, φ) defined by 

x 1 = cos (φ) · sin (θ ) , 

x 2 = sin (φ) · sin (θ ) , 

x 3 = cos (θ ) 

(2) 

with θ ∈ [0, π ], φ ∈ [0, 2 π ], and surface measure sin ( θ ). 

The spherical harmonics H k (S 
d ) of (exact) degree k (cf. [1, p.133] ) are widely used to determine a basis on the sphere S d . 

They are homogenous polynomials of degree k 

p(x 1 , . . . , x d+1 ) = 

∑ 

b 1 + ···+ b d = k 
a b 1 , ... ,b d+1 

x b 1 
1 

. . . x 
b d+1 

d+1 

such that 

	p(x 1 , . . . , x d+1 ) = 0 
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