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KEW{OTC’S-‘ ) In this paper, by constructing suitable comparison functions, we mainly give the bound-

Infinity Laplacian ary behavior of solutions to boundary blow-up elliptic problems A, u=b(x)f(u), xe

Blow-up solutions
Asymptotic behavior
Comparison functions

Q, u|yq = +oo, where Q is a bounded domain with smooth boundary in RN, the operator
Ao is the oco-Laplacian, b e C%(€2) which is positive in € and may be vanishing on the
boundary and rapidly varying near the boundary and the nonlinear term f is a I'-varying
function at infinity, whose variation at infinity is not regular.
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1. Introduction and the main results

This paper is devoted to the study of asymptotic behavior of solutions to the following boundary blow-up elliptic prob-
lem

AU =bX)f(u), u>0, xe 2, ulyg= oo, (1.1)
where the operator A, is the co-Laplacian, a highly degenerate elliptic operator given by
N
Anelt := (D*uDu, Du) = ) DjuD;juDju,
ij=1

b satisfies
(bq) b e C(S) is positive in €,
and f satisfies
(f1) f € C[0, c0)NC(0, 00), f(0) =0, f(s) > 0,s >0, f{s)/s is increasing on (0, co).

By a solution to the problem (1.1), we mean a nonnegative function u € C(2) that satisfies the equation in the viscosity
sense (see Section 2 for definition) and the boundary condition with u(x) — oo as the distance function d(x) := dist(x, 2)
— 0. Such a solution is called a large solution, an explosive solution or a boundary blow-up solution.

The oco-Laplacian was first introduced in the work of Aronsson [1] in connection with the geometric problem of finding
the so-called absolutely minimizing functions in €2. However, this operator is quasilinear and highly degenerate and in
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general does not have smooth solutions. Therefore solutions are understood in the viscosity sense, a concept introduced by
Crandall and Lions [2] and Crandall et al. [3]. By using the viscosity solutions, Jensen [4] proved that u e C() is an absolute
minimizing Lipschitz extension of g € Lip(d€2) if and only if A,u =0, in the viscosity sense, in € and u =g on d<2. Since
then, the infinity Laplace equation has been extensively studied, see, for instance, [5-12] and the references therein.

The investigation of boundary blow-up problems for elliptic equations has a long history. Early studies mainly focused
on problems involving the classical Laplace operator A, i.e.

Au=bx)f(u), u>0, xeQ, ulyg =cc. (1.2)

The problem (1.2) was considered for the first time by Bieberbach [13] with N =2,b(x) =1 and f(u) = e", the author
showed that there exists a unique solution such that u(x) —log(d(x)~2) is bounded as x — 0. Problems of this type
arise in Riemannian geometry, more precisely, if a Riemannian metric of the form |ds|? = e2!®|dx|2 has constant Gaussian
curvature —b?, then Au = b%e%". It was finally shown by Lazer and McKenna in [14] that the solution is unique with no
further restriction.

For b(x) = 1, Keller-Osserman ([15,16]) supplied a necessary and sufficient condition

o0 dv S
<00, Ya=0, F(s)= / F()dv, (1.3)
/a v/ 2F(s) 0
for the existence of solutions to problem (1.2).
Loewner and Nirenberg [17] showed that if f(u) = uPo with pg = (N+2)/(N—2), N > 2, then problem (1.2) has a unique
positive solution u which satisfies

. 22 (N=2)/4
Jim u() (d0) =(N(N—2)/4)

Bandle and Marcus [18] established the following results: if f satisfies (f;) and the condition that
(Hp) there exist & > 0 and Sy > 1 such that f(&s) < &40 f(s) for all £ € (0, 1) and s > Sp/&, then for any solution u of
problem (1.2)
u(x)
$(d(x))

where ¢ satisfies

-1 as d(x) —> 0, (1.4)

/ 5 _¢ ve-o (15)
!

© /2F(s)

If f further satisfies
(Hq) f(s)/s is increasing in (0, oo), then problem (1.2) has a unique solution.
Lazer-McKenna [19] showed that if f satisfies (f;) and
(Hy) there exists Sy > 0 such that f is non-decreasing on [0, co) and
4
S—o0 F(S)
then for any solution u of problem (1.2)
u(x) —¢(d(x)) — 0as d(x) — 0.

Now we introduce a class of functions.
Let A denote the set of all positive non-decreasing functions k € C'(0, v) which satisfy

d (K(t) ¢
m (k(t)> —C, where K(t)= /0 k(s)ds. (16)

t—0t E

We note that for each k € A,

K(t)
— = 1].
tlrgl 70) 0 and C, € [0, 1]
The set A was first introduced by Cirstea and Radulescu in [20-24].
To present our main results, we briefly recall some notions from Karamata’s theory.
A positive measurable function f defined on [a, oo), for some a > 0, is called regularly varying at infinity with index p,
written f € RV,, if for each £ > 0 and some p € R,

lim ff(f:)) — &P, (1.7)

In particular, when p = 0, f is called slowly varying at infinity.
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