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In this paper, we discuss about the existence and uniqueness of the weak form of the non- 

uniform cantilever Euler–Bernoulli beam equation with variable axial (tensile and com- 

pressive) force. We investigate the reason of the buckling from the coercivity analysis. 

The frequencies of the beam with tensile force are found by the Galerkin method in the 

Sobolev space H 

2 with proper norm. Using this method, a system of ordinary differential 

equations in time variable is formed and the corresponding mass and stiffness matrices 

are constructed. A very general form of these matrices, which is very simple and suit- 

able for calculations, is derived here with a standard basis. Numerical results for rotating 

beams with polynomial stiffness and mass variation, typical of wind turbine and helicopter 

rotor blades, are obtained. These results match well with the published literature. A new 

polynomial generating set is found. Using two elements of this set, a formula to find the 

eigenfrequencies is derived. The proposed approach is easy to implement in symbolic com- 

puting software. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

For the last five decades, the rotating cantilever beam model has drawn the attention of researchers because of its 

widespread applications in the engineering field such as for helicopter rotor blades, wind turbine blades, propeller blades, 

gas turbine blades, flexible robot arms etc. The Euler–Bernoulli beam theory is typically used to model such rotating struc- 

tures. We should calculate the exact fundamental frequencies of these structures to design them to avoid the resonance and 

vibration problem [1] . Unfortunately, the exact solution of the response of the rotating beam is very onerous [2] . Therefore, 

the search for an approximate solution abounds in the literature. Among these approximate methods, the Rayleigh–Ritz 

method [3–5] , the Galerkin method [6,7] and the finite element method [8–12] are very famous. 

Due to the paucity of exact solution, the solution generated from one approximate method is compared with another 

standard approximate method or a semi-analytical method such as the Frobenious method [13] . The Frobenious method 

gives very good results as it is based on the series solution of the governing differential equation. The dynamic stiffness 

method is also very effective for solving the free vibration problem. Using these methods, we can control the level of accu- 

racy to any desired extent [14–17] . 

There is another very interesting method—Inverse problem method. If frequency and mode shape of a beam are given, 

then this method helps us to find the stiffness and mass of this system. The first successful application of this method was 
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Fig. 1. Schematic diagram of a rotating beam. 

made by Elishakoff and Candan [18] on the inhomogeneous beam with different boundary conditions. Sarkar and Ganguli 

[19] found a collection of nonuniform Euler–Bernoulli rotating beams of different stiffness and mass variation having same 

fundamental frequencies by using the inverse problem method. 

As the direct exact solution of the non-homogeneous beam with rotation is unavailable except for some peculiar special 

cases [20] , indirect methods like isospectral method are created. In this method, two different types of beams having the 

same eigenfrequencies, are sought. Kambampati et al. [21] found the nonuniform rotating beam isospectral to the uniform 

non-rotating beam. Since uniform non-rotating beam have an exact solution, the isospectral rotating beams could be used 

as benchmark solution to test finite element codes. 

The finite element method is used extensively in different forms to solve the equation of the rotating beam. The modified 

finite element analysis, like h-version, p-version, Fourier-p, dynamic finite element and spectral element method [22–24] , 

are created to make the solution procedure more efficient. In some papers [25,26] , the Galerkin method is applied on a finite 

dimensional subspace of the solution space to get the approximate solution. The Galerkin method and the finite element 

method are very congruent since they originated from the weak formulation of the physical problem. So we should inves- 

tigate the analytical area of this numerical technique for non-uniform rotating beam model. The main motivation of this 

investigation is to establish a strong analytical foundation of this numerical technique to control the error and the accuracy. 

Here, we discuss about the mathematical analysis of non-uniform Euler–Bernoulli beam with axial force, define its weak 

form and check the existence and uniqueness of the solution using the Galerkin method. This method has been applied on 

several physical problems [27] efficiently and its mathematical properties have been studied. To prove the existence and 

uniqueness of our weak problem, we make some assumptions which are related to the stiffness and rotating force of the 

system. For the beam with compressive axial force case, the net stiffness of the beam is decreasing which may introduce 

some physical problem such as buckling in the system. To introduce this difficulty in mathematical form, we establish a 

relation between stiffness and compressive force to get the proper approximate solution. In [28–30] , the existence of general 

elastic problem is discussed which helps us to define the weak form. After defining the weak form, we test the existence 

using the Galerkin method and then we search our solution in finite dimensional subspace to find the approximate solution. 

The approximate solution depends on the stiffness and axial force via the coefficient matrix generated from the Galerkin 

process. We investigate how the nature of the solution depends on the physical properties of the beam. 

The beam with axial force has many practical applications in engineering field. In the paper [31] , these types of systems 

are studied. The research on the beam with rotation (tensile axial force) is still developing [32] and different types of 

problems related with beam with rotation are being studied [33,34] for application in the engineering field. Hence we study 

both types of beams here i.e., the beam with axial tension and axial compression. We check the existence of weak solution 

simultaneously for these two types of beams. 

2. The rotating Euler–Bernoulli beam 

In this section we introduce the dynamic evolution equation of motion of the rotating Euler–Bernoulli beam (REBB) 

equation, a very important example of the beam with tensile axial force, shown in Fig. 1 . The beam is of varying stiffness 

and varying mass where EI ( x ) and m ( x ) are the flexure stiffness and mass per unit length at a distance “x ” from the axis of 

rotation. Here we fix the coordinate axes X , Y , Z along the length, breath and height of the beam, respectively. We consider 

the beam is slender and of length l and it is rotating with constant angular speed “�” with respect to Z . We denote by W ( x , 

t ), M ( x , t ) and f ( x , t ), the out-plane bending displacement along Z, bending moment and the external force, respectively, at 
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