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For a nonsymmetric saddle point problem, the modified shift-splitting (MSS) precondi- 

tioner has been proposed by Zhou et al. By replacing the parameter α in (2,2)-block in the 

MSS preconditioner by another parameter β , a generalized MSS (GMSS) preconditioner is 

established in this paper, which results in a fixed point iteration called the GMSS iteration 

method. We provide the convergent and semi-convergent analysis of the GMSS iteration 

method, which show that this method is convergence and semi-convergence if the related 

parameters satisfy suitable restrictions. Meanwhile, the distribution of eigenvalues and the 

forms of the eigenvectors of the preconditioned matrix are analyzed in detail. Finally, nu- 

merical examples show that the GMSS method is more feasibility and robustness than the 

MSS, Uzawa-HSS and PU-STS methods as a solver, and the GMSS preconditioner outper- 

forms the GSOR, Uzawa-HSS, MSS and LMSS preconditioners for the GMRES method for 

solving both the nonsingular and the singular saddle point problems with nonsymmetric 

positive definite and symmetric dominant (1,1) parts. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Consider the following large and sparse saddle point problem 

A u = 

(
A B 

−B 

T 0 

)(
x 
y 

)
= 

(
f 

−g 

)
≡ b, (1) 

where A ∈ R 

m ×m is nonsymmetric positive definite, B ∈ R 

m ×n , p ∈ R 

m and q ∈ R 

n with n ≤ m . It follows that the saddle point 

problem (1) is nonsingular when B is of full column rank and singular when B is rank deficient [16] . 

The saddle point problem (1) is important and arises in a variety of scientific and engineering applications, such as 

mixed finite element approximation of elliptic partial differential equations, optimal control, computational fluid dynamics, 

weighted least-squares problems, electronic networks, computer graphics etc; see [2,16,20] and references therein. 

When B in (1) is of full rank, i.e., the saddle point problem (1) is nonsingular, a number of iteration methods and their 

numerical properties have been discussed to solve the saddle point problem (1) in the literature, such as SOR-like meth- 

ods [12,14,28,29] , Uzawa-type methods [12,14,19,27,37,46] , Hermitian and skew-Hermitian splitting (HSS) methods [8] and 

� This research was supported by the National Natural Science Foundation of China -pl2X-sim-(No. 11171273 ) and sponsored by Innovation Foundation for 

Doctor Dissertation of Northwestern Polytechnical University (No. CX201628). 
∗ Corresponding author. 

E-mail addresses: ZhenggeHuang@mail.nwpu.edu.cn (Z.-G. Huang), lgwangmath@163.com , lgwang@nwpu.edu.cn (L.-G. Wang), 

zhongxu@nwpu.edu.cn (Z. Xu), JingjingCui@mail.nwpu.edu.cn (J.-J. Cui). 

http://dx.doi.org/10.1016/j.amc.2016.11.038 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.11.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.11.038&domain=pdf
http://dx.doi.org/10.13039/501100001809
mailto:ZhenggeHuang@mail.nwpu.edu.cn
mailto:lgwangmath@163.com
mailto:lgwang@nwpu.edu.cn
mailto:zhongxu@nwpu.edu.cn
mailto:JingjingCui@mail.nwpu.edu.cn
http://dx.doi.org/10.1016/j.amc.2016.11.038


96 Z.-G. Huang et al. / Applied Mathematics and Computation 299 (2017) 95–118 

its variants [3,5,7,9,10] , RPCG iteration methods [11,13,44] and Krylov subspace iteration methods [39] with high-quality 

preconditioners [2,16] . 

Though most often the matrix B occurs in the form of full column rank, but not always in practice. For example, in the 

finite difference discretization of the Navier–Stokes equation with periodic boundary conditions, B in (1) becomes singular. 

When B in (1) is rank deficient, the saddle point problem (1) is singular. In recent years, there has been a surge of interest 

in solving singular saddle point problem (1) . In [33,45,47,48] , the authors applied the Uzawa-type methods to solve singular 

saddle point problems. Yang et al. [42] discussed the Uzawa-HSS method for singular saddle point problems. Wang and 

Zhang [41] presented the preconditioned AHSS iteration method for singular saddle point problems. Chen and Ma [25] and 

Cao and Miao [23] investigated the generalized shift-splitting iteration method for singular saddle point problems. Very 

recently, Liang and Zhang [36] developed the convergence behavior of generalized parameterized Uzawa method for singular 

saddle point problems. 

Recently, based on the well-known Hermitian and skew-Hermitian splitting (HSS) of the matrix A as follows 

A = H + S, 

where H = 

1 
2 (A + A 

T ) , S = 

1 
2 (A − A 

T ) , and similar to the shift-splitting [15,21] , the modified shift-splitting (MSS) precondi- 

tioner [49] was proposed for nonsymmetric saddle point problem (1) , i.e., A = P MSS − Q MSS , where 

A = P MSS − Q MSS = 

1 

2 

(
αI + 2 H B 

−B 

T αI 

)
− 1 

2 

(
αI − 2 S −B 

B 

T αI 

)
(2) 

with α > 0 being a constant and I being the identity matrix with appropriate dimension. Based on the splitting (2) , the 

MSS iteration method is constructed for saddle point problems as follows: 

The MSS iteration method: given initial guess x (0) ∈ R 

m and y (0) ∈ R 

n , for k = 0 , 1 , 2 , . . . , until the iteration sequence 

{ (x (k ) T ) , (y (k ) T ) } is convergent, the matrix form of the MSS iteration algorithm is: 

1 

2 

(
αI + 2 H B 

−B 

T αI 

)(
x (k +1) 

y (k +1) 

)
= 

1 

2 

(
αI − 2 S −B 

B 

T αI 

)(
x (k ) 

y (k ) 

)
+ 

(
f 

−g 

)
, (3) 

where α is a given positive constant. 

In this paper, the idea of the MSS preconditioner is generalized and a generalized MSS (GMSS) preconditioner for the 

saddle point problem (1) is established. In the meanwhile, the convergence and semi-convergence of the GMSS iteration 

method are studied. Besides, the spectral properties of the GMSS preconditioned matrix are investigated. Numerical ex- 

periments are presented to show the effectiveness of the GMSS iteration method and the GMRES method with the GMSS 

preconditioner for solving the saddle point problems. 

The remainder of this paper is organized as follows. In Section 2 , we propose the generalized shift-splitting (GMSS) 

preconditioner and derive the implementation of this new preconditioner. The convergence properties of the GMSS iteration 

method for solving nonsingular saddle point problems and the choice of the iteration parameters are discussed in Section 3 . 

The semi-convergence conditions of the GMSS iteration method for solving singular saddle point problems will be given in 

Section 4 . The spectral properties of the GMSS preconditioned matrix are described in Section 5 . Section 6 is devoted to 

performing numerical examples to examine the feasibility and effectiveness of the GMSS iteration method and the GMSS 

preconditioned GMRES method for solving the saddle point problems. Finally, the paper is ended with some conclusions in 

Section 7 . 

2. The generalized modified shift-splitting preconditioner and its implementation 

To obtain the new iteration methods for saddle point problems, some authors introduced new parameters in the exist- 

ing methods and constructed the better methods [5,30,32,34,40] . Based on the preconditioned HSS (PHSS) method derived 

by Bai et al. [10] , Bai and Golub [5] and Li et al. [34] obtained the AHSS and parameterized preconditioned HSS (PPHSS) 

methods, respectively. Recently, on the basis of the shift-splitting (SS) preconditioner [21] , Chen and Ma [24] and Cao et al. 

[22] replaced the parameter α in (2,2)-block of the SS preconditioner by another parameter β , and employed the generalized 

SS (GSS) preconditioner. Numerical experiments were provided to demonstrate that the GSS preconditioner outperforms the 

SS preconditioner. This idea motivates us to develop the generalized modified shift-splitting (GMSS) preconditioner for sad- 

dle point problem (1) by replacing the parameter α in (2,2)-block in the MSS preconditioner by another parameter β . Since 

the parameters α and β in (1,1) and (2,2)-blocks of the GMSS preconditioner are not associated, it is anticipated that the 

GMSS iteration method and the GMSS preconditioner with proper chosen parameters would be much better than the MSS 

iteration method given by (3) and the MSS preconditioner, respectively. 

Let A = H + S be the symmetric and skew-symmetric splitting of the (1,1)-block of the matrix A defined as in (1) , where 

H = (A + A 

T ) / 2 and S = (A − A 

T ) / 2 . Based on the MSS iteration method, we replace the parameter α in (2,2)-block of the 

MSS preconditioner by another parameter β with β > 0, and a new splitting which is referred to as the generalized modified 

shift-splitting (GMSS) for the nonsymmetric matrix A is derived as follows 

A = P GMSS − Q GMSS = 

1 

2 

(
αI + 2 H B 

−B 

T βI 

)
− 1 

2 

(
αI − 2 S −B 

B 

T βI 

)
, (4) 
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