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Abstract

Since some dynamical behaviors of a one-dimensional mapping are
influenced by the number of forts, attention is paid to the change of the
number under iteration. For simple computation we work on quadratic
polynomials. We use the theory of polynomial complete discrimina-
tion system to give a symbolic algorithm for the number of forts of
iterated polynomials and apply the algorithm to quadratic functions,
which proves an alternative result that the number either persists to be
1 or tends to infinity under iteration. We further compute the num-
ber for iterates of order 2, 3, ..., 7 in the above infinity case and obtain
critical values of the parameter at which the number changes. Those
changes with finitely many data display a conjectured Fibonacci rule.
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1 Introduction

Consider a mapping f : E → E, where E is a nonempty set. For a given
integer n ≥ 1, the n-th order iterate fn of f is defined by

fn(x) = f(fn−1(x)), f 0(x) = x, ∀x ∈ E,

recursively. Iteration is one of the most important actions in engineering
techniques because of the extensive applications of numerical computation
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