Accepted Manuscript

Forts of quadratic polynomials under iteration

Zhiheng Yu, Weinian Zhang

PII: \quad S0377-0427(17)30425-9
DOI: https://doi.org/10.1016/j.cam.2017.09.008
Reference: CAM 11288
To appear in: Journal of Computational and Applied
Mathematics
Received date: 18 January 2017
Revised date: 27 June 2017

Please cite this article as: Z. Yu, W. Zhang, Forts of quadratic polynomials under iteration, Journal of Computational and Applied Mathematics (2017), https://doi.org/10.1016/j.cam.2017.09.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Forts of quadratic polynomials under iteration

Zhineng $\mathrm{Yu}^{a *}$ and Weinian Zhang ${ }^{b}$
${ }^{a}$ School of Mathematics, Southwest Jiaotong University
Chengdu, Sichuan 611756, China
${ }^{b}$ School of Mathematics, Sichuan University
Chengdu, Sichuan 610064, China

Abstract

Since some dynamical behaviors of a one-dimensional mapping are influenced by the number of forts, attention is paid to the change of the number under iteration. For simple computation we work on quadratic polynomials. We use the theory of polynomial complete discrimination system to give a symbolic algorithm for the number of forts of iterated polynomials and apply the algorithm to quadratic functions, which proves an alternative result that the number either persists to be 1 or tends to infinity under iteration. We further compute the number for iterates of order $2,3, \ldots, 7$ in the above infinity case and obtain critical values of the parameter at which the number changes. Those changes with finitely many data display a conjectured Fibonacci rule.

Keywords: iteration; forts; quadratic polynomial; complete discrimination system; Fibonacci sequence

MSC (2010) Classification: 37E05; 39B12; 68W30.

1 Introduction

Consider a mapping $f: E \rightarrow E$, where E is a nonempty set. For a given integer $n \geq 1$, the n-th order iterate f^{n} of f is defined by

$$
f^{n}(x)=f\left(f^{n-1}(x)\right), \quad f^{0}(x)=x, \quad \forall x \in E,
$$

recursively. Iteration is one of the most important actions in engineering techniques because of the extensive applications of numerical computation

[^0]
https://daneshyari.com/en/article/5776027

Download Persian Version:

https://daneshyari.com/article/5776027

Daneshyari.com

[^0]: *Corresponding author: yuzhiheng9@163.com

