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a b s t r a c t

The Primal–Dual Hybrid Gradient (PDHG) algorithm is a powerful algorithm used quite
frequently in recent years for solving saddle-point optimization problems. The classical
application considers convex functions, and it is well studied in literature. In this paper,
we consider the convergence of an alternative formulation of the PDHG algorithm in the
nonconvex case under the precompact assumption. The proofs are based on the Kurdyka–Ł
ojasiewic functions, that cover a wide range of problems. A simple numerical experiment
illustrates the convergence properties.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to solving the following well-studied primal problem

min
x

Φ(x) := f (x) + g(Kx), (1)

where K ∈ Rm×n and x ∈ Rn. If f and g are convex functions, one can represent model (1) as the following saddle-point
problem

min
x

max
y

Ψ (x, y) := f (x) − y⊤Kx − g∗(y), (2)

where g∗ is the convex conjugate function of g . The saddle-point problem (2) is ubiquitous in different disciplines and
applications, especially in the total variation regularization problem arising in imaging science [1–3].

A classical and frequently-used method for solving problem (2) is the Primal–Dual Hybrid Gradient (PDHG) algo-
rithm [4,5]. Mathematically, PDHG algorithm can be described as the iterative process⎧⎪⎨⎪⎩

xk+1
= argmin

x

{
Ψ (x, yk) +

r
2
∥x − xk∥

2
2

}
,

yk+1
= argmax

y

{
Ψ (xk+1, y) −

s
2
∥y − yk∥

2
2

}
,

(3)
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where r and s are the step sizes of the method. If f and g are convex functions, another description (obtained by choosing
θ = 0 in [6]) of the PDHG algorithm is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

yk+1
∈ argmin

y

{ s
2
∥y − Kxk∥

2
2 − ⟨y, qk⟩ + g(y)

}
,

qk+1
= qk + s(Kxk − yk+1),

xk+1
∈ argmin

x

{
1
2t

∥x − xk∥
2
2 + ⟨Kx, qk+1

⟩ + f (x)
}

,

(4)

where now K , r and t are the parameters and step sizes of the method. We can easily see that in (4) the main steps in each
iteration just lay on calculating the proximal maps of f and g . Compared with (3), the scheme (4) can be directly used to the
nonconvex case. This is because in (3) the convex conjugate function g∗ is used in the definition (2) of the function Ψ (x, y),
however, the conjugate function of a nonconvex function has not been well defined yet in literature, but the proximal maps
used in (4) exist for closed nonconvex functions.

Although scheme (4) is apparently similar to the Alternating Direction Method of Multipliers (ADMM) algorithm [7–10],
they are in fact quite different (the authors in [6] also point out this fact). Actually, PDHG has a deep relationship with the
inexact Uzawa method [11]. In [12], the authors prove the convergence of PDHG under asymptotical assumptions on the
step sizes. The sublinear convergence rate was established in [13] in an ergodic sense via variational inequalities, providing
a very conciseway to understand the convergence influenced by the step size.Meanwhile, paper [1] also proves the sublinear
convergence rate of the PDHG, and this convergence problem is an active research subject in literature [14–17].

In all the previous papers, the convergence problem was studied for the convex case. In this paper, we study the
convergence of the PDHG algorithm for the nonconvex case. More precisely, we consider the scheme (4) where f and g are
both nonconvex functions. With the help of Kurdyka–Ł ojasiewic function properties, we prove that the points generated by
scheme (4) converge to a critical point of Φ under the precompact assumption (that is, assuming the sequence is bounded).
The proofs of our results aremotivated by previous recentworks [18–20]. Finally, we present a simple numerical experiment
to show the convergence properties. We remark that the convergence results presented in this paper are based on the
precompact assumption. Then, we do not prove the generic convergence problem for the nonconvex PDHG algorithm.

The paper is organized as follows: Section 2 presents some basic results and definitions; Section 3 contains the
convergence results for the nonconvex PDHG algorithm; Section 4 reports a simple numerical example; and finally, Section 5
presents some conclusions.

2. Preliminaries

In this section we present the definitions and basic properties in variational and convex analysis and in Kurdyka–Ł
ojasiewicz functions used later in the convergence analysis.

2.1. Subdifferentials

We collect several definitions as well as some useful properties in variational and convex analysis (see for more details
the excellent monographes [21–23]).

Given a lower semicontinuous function J : RN
→ (−∞, +∞], its domain is defined by

dom(J) := {x ∈ RN
: J(x) < +∞}.

The graph of a real extended valued function J : RN
→ (−∞, +∞] is defined by

graph(J) := {(x, v) ∈ RN
× R : v = J(x)}.

The notation of subdifferential plays a central role in (non)convex optimization.

Definition 2.1 (Subdifferentials [21,22]). Let J : RN
→ (−∞, +∞] be a proper and lower semicontinuous function.

1. For a given x ∈ dom(J), the Fréchet subdifferential of J at x, written as ∂̂ J(x), is the set of all vectors u ∈ RN which satisfy

lim inf
y̸=x
y→x

J(y) − J(x) − ⟨u, y − x⟩
∥y − x∥2

≥ 0.

When x ̸∈ dom(J), we set ∂̂ J(x) = ∅.
2. The (limiting) subdifferential, or simply the subdifferential, of J at x ∈ RN , written as ∂ J(x), is defined through the

following closure process

∂ J(x) := {u ∈ RN
: ∃xk → x, J(xk) → J(x) and uk

∈ ∂̂ J(xk) → u as k → ∞}.
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