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a b s t r a c t

This study examines necessary and sufficient conditions for a planar quintic Bézier curve
to be a Pythagorean-hodograph (PH) curve. Quintic PH curves can be categorized into two
classes according to the representation of their derivatives. While the first class has been
studied by Farouki (1994) to be a family of regular curves already, a more succinct proof
by introducing auxiliary control points is provided in this paper. Geometric characteristics
of the second class of quintic PH curves are also studied. The key technique to simplify the
discussion is to represent a planar Bézier curve with a complex polynomial in Bernstein
form. Benefiting from such complex expression, algebraic characteristics of quintic PH
curves can be described by nonlinear complex systems with respect to control points. By
treating these systems with geometric methods, conditions for a quintic planar curve to
be a PH curve can be described in terms of geometric constraints on its control polygon.
Furthermore, we provide methods for the construction of the second class of quintic PH
curves. In particular, parameter values of cusps can be explicitly determined in advance for
irregular curves.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Pythagorean-hodograph (PH) curves introduced in [1] are an important class of polynomial curves that forms mathe-
matical foundation of most current computer aided design (CAD) tools. By incorporating special algebraic structures in their
tangent curves, PH curves possess a number of advanced properties over ordinary polynomial parametric curves. These
properties include polynomial arc-length functions and rational offset curves. Hence, PH curves are considered as an elegant
solution to a variety of difficult issues arising in applications (e.g., tool paths) in the fields of computer numerical control
machining and real-time motion control. For example, the arc-length of a PH curve can be computed without numerical
integration, thus accelerating algorithms for numerically controlled (NC) machining [2]. The offsets of a PH curve can also
be represented exactly rather than being approximated in CAD systems. Thus, analyzing and manipulating PH curves are of
great practical value in CAD and other applications.

The concept of planar polynomial PH curve [1,3–5] is generalized to higher dimension spaces [6–9] and rational
polynomial curves [10,11]. For more details about PH curves, we refer the readers to a comprehensive survey [12] and
references therein.

PH curves can be represented as widely used Bézier curves in general, the most intuitive and efficient method for
constructing PH curves is by adjusting the control points of Bézier curves under conditions guaranteeing PH properties.
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Hence, intrinsic geometric characteristics of control polygons of PH curves should be investigated. For example, an intuitive
geometric condition on the control polygon was proposed for a cubic Bézier curve to be a PH curve [1]. The planar PH cubic
is considered to be unique if the freedoms of rigid motion, uniform scaling, and linear re-parametrization are not taken
into account. To obtain more shape flexibility for practical application, PH curves of higher degrees are considered [3,13].
In particular, quintic PH curves have sufficient degree of freedoms for many applications. For example, quintic PH curves
can satisfy general C1 or G2 geometric conditions [3,14], hence can be used to construct round corners between two given
curves [14,15]. Some special curves (e.g., spiral curves [16]) can also be designed by using PH quintics.

Although quintic PH curves exhibit greater shape flexibility, we can hardly derive a simple and all-encompassing
characterization in terms of constraints on their control polygons. The constraints on the control polygons of a subset of
quintic PH curves were discussed in [3,14]. In this paper, we go one step further to give a complete classification of quintic
PH curves and derive geometric characteristics of each class in terms of constraints on their control polygons.

As will be seen in the following sections, quintic PH curves can be classified into two classes, referred as class I and class
II curves, according to the factorizations of their tangent curves. The family of regular quintic PH curves studied in [3,17]
is essentially the class I curves in the present paper. The authors in [3] provided a sufficient and necessary condition for a
quintic Bézier curve to be a class I curve and we will express a proof more succinctly by introducing auxiliary control points.
Besides, we discuss geometric characteristics of class II curves, which can be regular or irregular curves. To the best of our
knowledge, this is the first work that provides geometric condition for class II curves. To achieve these results, we represent a
planar Bézier curve by a complex polynomial in terms of Bernstein polynomials, which enables a clear and uniform analysis
on geometric characteristics of both class I and class II curves.

Many recent works have used PH curves as specific tool for solving practical problems, such as speed re-parametrization,
whereHermite interpolation problem is usually involved. Hence, there is a lot of research on the construction of a PH curve in
Hermite interpolation problemwith diverse boundary conditions [3,6–8,17–22]. As an application of our theoretical results,
we show that a regular or irregular quintic PH curve interpolating given geometric data can be simply constructed by solving
a nonlinear equation. It has been proved that there are four different class I regular quintic PH curves under a given C1

Hermite interpolation condition [12,17,19].We show that there are also four different class II quintic PH curveswhich satisfy
a given C1 Hermite interpolation condition. It has been known that an irregular quintic PH curve has two cusps. We show
that an irregular quintic PH curve with cusps outside the interval of interest can also be constructed by solving complex
equations.

The remainder of this paper is organized as follows: Section 2 introduces some preliminary definitions and notations
of PH curves in Bernstein form. Section 3 categorizes quintic PH curves into two classes, which are discussed, respectively.
Section 4 provides approaches for the construction of quintic PH curves under initial geometric conditions. Besides, some
experiments are also conducted to validate the intuitiveness and effectiveness of our methods. Finally, Section 5 concludes
the paper.

2. Preliminaries

Let R and C denote the sets of all real and complex numbers, respectively. Throughout this paper, we denote a complex
number by a single bold character, e.g., z . For a complex number z ∈ C, we denote its conjugate complex number by z , and
its complex norm on C by ∥z∥. Following [3,12], we use the complex representation of R2 to facilitate the derivation in the
subsequent analysis of planar PH curves. Thus, a planar point is denoted by an order pair of real numbers (x, y) and a complex
number x + iy interchangeably. Similarly, a planar parametric curve P(t) = (x(t), y(t)), t ∈ [0, 1], can be identified with a
complex-valued function P(t) = x(t) + iy(t), and vice versa.

Let Bn
i (t) =

( n
i

)
(1 − t)n−it i, i = 0, . . . , n, be Bernstein polynomials, a quintic Bézier curve is defined by

P(t) =

5∑
i=0

B5
i (t)P i, 0 ≤ t ≤ 1, (1)

where P i, i = 0, . . . , 5, are the control points. The polygon formed by consecutively connecting control points is called the
control polygon. Let∆P i denote the first forward-difference of the ith control point, i.e.,∆P i = P i+1 −P i. Then, the derivative
of the curve (1) can be represented in Bernstein form as

P ′(t) = 5
4∑

i=0

B4
i (t)∆P i. (2)

Let Li = ∥∆P i∥, then ∆P i can be expressed in polar coordinates as ∆P i = Lieiφi with certain φi ∈ [0, 2π ).
Let x(t) and y(t) be real polynomials with respect to t , t ∈ [0, 1]. A planar curve P(t) = x(t)+ iy(t) is called a Pythagorean-

hodograph (PH) curve if and only if its derivative P ′(t) = x′(t) + iy′(t) satisfies the Pythagorean condition

x′2(t) + y′2(t) = σ 2(t),

for some real polynomial σ (t) [7]. Equivalently, a planar curve P(t) is a PH curve if and only if

P ′(t) = w(t)[u(t) + iv(t)]2, (3)
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