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a b s t r a c t

This paper is devoted to the numerical analysis of a multi-level Monte Carlo weak Galerkin
(MLMCWG) approximation with nested meshes for solving stochastic Brinkman equations
with two dimensional spatial domain. With weak gradient operator and a stabilizer at
hand, theweak Galerkin (WG) technique is a high-order accurate and stablemethodwhich
can easily handle deterministic partial differential equations with complex geometries,
flows with jump fluid viscosity coefficients or high-contrast permeability fields given by
each sample. Themulti-level Monte Carlo (MLMC) technique with nestedmeshes balances
the sampling error and the spatial approximation error, where the computational cost
can be sharply reduced to log-linear complexity with respect to the degree of freedom in
spatial direction. The nested meshes requirement is introduced here in order to simplify
the analysis, which can be generalized to MLMC with non-nested meshes. Error estimates
are derived in terms of the spatialmeshsize and the number of samples. The numerical tests
are provided to illustrate the behavior of the MLMCWG method and verify our theoretical
results regarding optimal convergence of the approximate solutions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There are multitude of interesting models for the mathematical modeling of flows in porous media and materials,
e.g., industrial filters, natural water management, dolomite or limestone oil reservoirs, etc.. In these applications, the Darcy
model can handle the slow flow problems [1], while it does not predict the cavity problems well. The Stokes model is
the steady state of the Navier–Stokes equation, which is capable of modeling flow of cavity problems [2]. The behavior
of viscous fluid in cavity and porous media can be captured accurately by the Darcy–Stokes interface model provided the
priori information of the interface is given. However, the location and the geometry of the interface are unattainable in
many applications, and the interface jump conditions are difficult to impose experimentally even with precise information
of the interface at hand. The Brinkman model of porous media, which is a generalization of the Stokes equation and an
approximation of the Navier–Stokes equations at low Reynolds numbers, behaves like a Darcy flow and a Stokes flow for the
regions with large and small permeability values, respectively [3].

The Brinkmanmodel is a combination of Darcy’s and Stokes’ equations, which is a very effectivemodel for flows in highly
heterogeneous media in real applications. Therefore, the accuracy of the Brinkman flow simulation is of significant practical
interest, but it is not easy to design uniform stable efficient algorithms to capture the behavior of the Darcy flow and the
Stokes flow in different permeability regions simultaneously. Generally speaking, the usual Darcy stable method does not
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work well for the Stokes flow and vice versa. The Darcy stable elements, such as the Raviart–Thomas elements, although
perform well in the regions with large permeability value, perform poorly in the Stokes regions [4]. On the other hand, the
Stokes stable elements, such as the conforming P2–P0 element and the nonconforming Crouzeix–Raviart element, perform
well in the regionswith small permeability value and perform poorly in the Darcy regions [5]. Many algorithms are proposed
bymodifying either existing Darcy stable elements or Stokes stable elements to design Brinkman stable elements, which are
uniformly stable in both Darcy’s and Stoke’s regions (see [5,6] and references therein). Recently, Mu,Wang, and Ye proposed
aweak Galerkin scheme for the deterministic Brinkman equation, which is uniformly stable for large and small permeability
regions, based on theweak gradient operator [7]. Themost important advantage of this method is that the same formulation
works well for both the Darcy and the Stokes problems.

In many practical applications, the interfaces of the Darcy and Stokes domain are unknown beforehand, which is
equivalent to that the permeabilities are random variables or the fluid viscosities coefficients jumps stochastically. The
stochastic partial differential equation (SPDE) is a powerful tool which adequately describes the behavior of flows in highly
heterogeneous media with stochastic permeability and viscosity. Let D ⊂ R2 be a bounded convex domain with piecewise
smooth boundary and (Ω,F,P) be a probability space. Here, we shall consider the following stochastic Brinkman equation:
find the velocity u(x, ω) : (D × Ω)2 → R2 and the pressure p(x, ω) : D × Ω → R of the fluid, such that

− µ(x, ω)∆u + ∇p + µ(x, ω)κ−1(x, ω)u = f(x), in D × Ω, (1)
∇ · u = 0, in D × Ω, (2)

u = g(x), on ∂D, (3)

where the viscosity µ is a stochastic function with jump and κ is the stochastic permeability tensor (will be specified in the
next section). Here the forcing term f ∈ L2(D)2 and the boundary data g ∈ H

1
2 (∂D)2 are deterministic functions with the

compatibility condition∫
∂D

g · nds = 0.

This type of stochastic problems have many applications in industrial and engineering phenomena, such as groundwater
systems [8–10] and vuggy porous media [1,11]. For the sake of simplicity, we consider g = 0 in the sequel.

In this work, we will employ an efficient MLMCWG method for solving stochastic Brinkman equations (1)–(3). There
are several merits of our algorithm. As mentioned above, one of the main advantages of the stochastic Brinkman model is
that it can capture the Stokes and Darcy type flow behavior depending on the value of κ without priori information of the
interface, and theWGmethod is uniformly stable forDarcy’s and Stoke’s regions for each realization of (1)–(3). Based onweak
derivatives [12–15], theWGmethod shall provide a systematic framework for dealing with high-oscillation or discontinuity
of the solutions near the interface of Darcy’s and Stokes’ regions. Secondly, the MLMCWG method requires suboptimal
computational cost of log-linear complexity, in terms of the degree of freedom used in the WG approximation. The multi-
level Monte Carlo technique has been widely used to replace traditional MC-like methods, so that the computational cost
can be sharply reduced [16–19]. Finally, the interfaces between Darcy’s and Stokes’ regions are always complicated, and
the traditional triangular partitions may not be suitable for practical computations. On the other hand, the WG method
allows arbitrary polygons as long as the partitions are shape regular (cf. [20]) which is more efficient than the standard finite
element method (FEM), and the corresponding MLMCWG is superior than MLMCFEM for stochastic case. The convergence
analysis of the WG method with different polygons are guaranteed under the same framework, which makes this method
more flexible and robust.

The remainder of this paper is organized as follows. In Section 2, the preliminaries including relevant terminologies and
notations are presented. In Section 3,we show theweak derivatives, variational formulations, and theweakGalerkinmethod
for the stochastic Brinkman problem. This is followed by the description of the single level Monte Carlo weak Galerkin
(SLMCWG) method and the multi level Monte Carlo weak Galerkin method for stochastic Brinkman equations (1)–(3) in
Section 3. In Section 4, we present the convergence results of SLMCWG and MLMCWG, respectively. The corresponding
computational complexities are also analyzed. In Section 5, several numerical simulations are provided to demonstrate the
efficiency of our algorithms. The last section is devoted to some concluding remarks.

2. Preliminaries

2.1. Terminologies

A multi-index α = (α1, α2) is a two-tuple of non-negative integers with its length given by |α| = α1 + α2. For a non-
negative integerm, set

Hm(D) = {v ∈ L2(D); ∂αv ∈ L2(D), 0 ≤ |α| ≤ m}
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