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Numerical approximation of a Tikhonov type regularizer by a
discretized frozen steepest descent method

Santhosh George1 and M. Sabari2

Abstract

We present a frozen regularized steepest descent method and its fi-
nite dimensional realization for obtaining an approximate solution for the
nonlinear ill-posed operator equation F (x) = y. The proposed method
is a modified form of the method considered by Argyros et al. (2014).
The balancing principle considered by Pereverzev and Schock (2005) is
used for choosing the regularization parameter. The error estimate is de-
rived under a general source condition and is of optimal order. Numerical
example provided proves the efficiency of the proposed method.

MSC: 47A52, 65J15
Keywords: Nonlinear ill-posed problem; Steepest descent method; balancing
principle.

1 Introduction

Inverse problems arise in many practical applications, such as inverse scattering
problem, tomographic, parameter identification in partial differential equations
(see [5, 9, 13]). They can be modeled as an operator equation

F (x) = y, (1.1)

where F : D(F ) ⊆ X → Y is a nonlinear Fréchet differentiable operator be-
tween the Hilbert spaces X and Y. Throughout this study, D(F ), 〈., .〉 and ‖.‖,
respectively stand for the domain of F, innerproduct and norm which can always
be identified from the context in which they appear. Fréchet derivative of F
is denoted by F ′(.) and its adjoint by F ′(.)∗. Further we assume that equation
(1.1) has a solution x̂, which is not depending continuously on the right-hand
side data y. The problems in which the solution x̂ is not depending continuously
on the right hand data are called ill-posed problems. It is a common practice
to use iterative methods or iterative regularization methods for approximat-
ing x̂. For example, Landweber method ( [10,23]), Leveberg-Marquardt method
( [11]), Gauss-Newton ( [3,4]), Conjugate Gradient ( [12]), Newton-like methods
( [6, 16]), TIGRA (Tihkonov-gradient method) ( [22]).

It is assumed further that we have only approximate data yδ ∈ Y with

‖y − yδ‖ ≤ δ.
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