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a b s t r a c t

The positive semidefinite constraint and equality constraint arise widely in matrix opti-
mization problems of different areas including signal/image processing, finance and risk
management. In this paper, an inexact accelerated Augmented Lagrangian Method (ALM)
relying on a parameter m is designed to solve the structured low-rank minimization with
equality constraint, which is more general and flexible than the existing ALM and its
variants. We prove a worst-case O(1/k2) convergence rate of the new method in terms of
the residual of the Lagrangian function, andwe analyze thatwhenm ∈ [0, 1) the residual of
our method is smaller than that of the traditional accelerated ALM. Compared with several
state-of-the-art methods, preliminary numerical experiments on solving the Q-weighted
low-rank correlation matrix problem from finance validate the efficiency of the proposed
method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following structured low-rank matrix minimization with equality constraint

min f (Y )
s.t. g(Y ) = 0,

Y ∈ Sn
+
, rank(Y ) ≤ r,

(1.1)

where f (Y ) : Rn×n
→ R, g(Y ) : Rn×n

→ R are respectively convex and concave functions (but not necessarily smooth);
Rn×n,Rn,R denote the set of n × n dimensional real matrices, the set of n dimensional real column vectors and the set of
real numbers, respectively; Y ∈ Sn

+
means a symmetric positive semidefinite matrix in Rn×n, and r (1 ≤ r ≤ n) is a given

positive integer. Throughout the discussions, we assume that the solution set of the problem (1.1) is nonempty.
In 2010, He et al. [1] introduced an accelerated Augmented Lagrangian Method (ALM) to tackle the following linearly

constrained optimization problem

min{f (x)| Ax = b, x ∈ Ω}, (1.2)

✩ The work was supported by the National Natural Science Foundation of China (11671318; 11571271; 11101325) and the Natural Science Foundation
of Fujian province (2016J01028).

* Corresponding author.
E-mail addresses: baijianchaok@126.com (J.-C. Bai), jcli@mail.xjtu.edu.cn (J.-C. Li).

http://dx.doi.org/10.1016/j.cam.2017.09.021
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.09.021
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.09.021&domain=pdf
mailto:baijianchaok@126.com
mailto:jcli@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.cam.2017.09.021


476 J.-C. Bai et al. / Journal of Computational and Applied Mathematics 330 (2018) 475–487

where f (x) is a differentiable convex function and Ω is a closed convex set. Later, this method was applied to deal with
the complex matrix case of (1.2) with tr(Y ) = 1 and Ω being the set of positive semidefinite Hermitian matrices, whose
effectiveness was verified by testing a density matrix optimization problem [2]. Clearly, the problem (1.1) is more complex
and is an extension of (1.2) from vector to matrix and linear to nonlinear constraints. Moreover, the functions f (Y ) and g(Y )
can be sub-differentiable in the subsequent analysis of our proposed General Inexact Accelerated ALM (GIALM), while both
the objective function and equality constraint of (1.2) are differentiable with respect to the variable x. This paper is strongly
motivated by the work [1] and recent investigations on the popular Q-weighted low-rank correlation matrix problem [3,4]
arising in finance:

min ∥C − Y∥
2
Q

s.t. Yii = 1, i = 1, 2, . . . , n,
Y ∈ Sn

+
, rank(Y ) ≤ r,

(1.3)

where C ∈ Rn×n is a given symmetric matrix; Q ∈ Sn2
+

is a weighted matrix defined by Q = Q1 ⊗ Q2 with Q1,Q2 ∈ Sn
+
; the

symbol ⊗ denotes the Kronecker product defined by A ⊗ B = (aijB) for any matrices A, B ∈ Rm×n and aij is the ijth entry of
matrix A; the notation ∥ · ∥Q stands for the Q-weighted norm which is defined by

∥C∥Q =

√
vec(C)TQvec(C). (1.4)

Besides, several other popular problems also inspire us to develop a unified algorithm framework for solving (1.1), for
instance, the low-rank semidefinite programming problem [5], the low-rank approximation of the positive semidefinite
Hankelmatrix [6] and the low-rank solution of structuredmatrix optimization problems [7–9]. In such cases, these problems
can be naturally extended to the general structured low-rank minimization model (1.1).

There are two major contributions of our paper. One contribution is that the usual vector minimization problem with
linear constraints is extended to a class of structured matrix minimization problems with nonlinear constraints. Since
the involved functions are possibly non-differentiable, by using the properties of sub-differential operators we develop a
novel GIALM depending on a parameter m to tackle the problem (1.1), where a worst-case O(1/k2) convergence rate of
the algorithm is established and here k denotes the iteration number. Moreover, we analyze that the residual of GIALM
is smaller than that of the methods in [1,10] when m is restricted into [0, 1). The other contribution is that the proposed
method is applied to handle the Q-weighted correlationmatrix problem (1.3). Bymaking use of the Gramian representation,
the corresponding subproblem is equivalently transformed into an unconstrained optimization problem. Then, we use a
quasi-Newton algorithm with Armijo line search to solve it. Numerical examples from finance are tested to illustrate that
our method could outperform several others.

The remaining parts of this article are organized as follows. In Section 2, we introduce the concept of the sub-differential
with its properties and review the classical ALM. Then, the new GIALM is constructed to deal with the original problem.
Section 3 applies the proposed algorithm to the Q-weighted correlation matrix problem, whose subproblem is solved by the
quasi-Newton algorithm. Section 4 investigates the performance of our proposed method and comparative experiments are
also carried out. Finally, in Section 5 some conclusions are introduced.

2. General inexact accelerated augmented Lagrangian method

In this section we first prepare some preliminaries that will be of use in the subsequent sections. Then, the GIALM is
developed to solve the problem (1.1), whose convergence is analyzed afterwards.

Any matrixM ∈ Rn×n is called the sub-gradient (see [11], p. 214) of a convex function f (X) : Rn×n
→ R at Y ∈ Rn×n, if it

satisfies

f (X) − f (Y ) ≥ ⟨M, X − Y ⟩, (S)

where ⟨·, ·⟩ denotes the standard inner product defined by ⟨A, B⟩ = tr(ATB) for any A, B ∈ Rm×n. The set of all sub-gradients
of f (X) is called its sub-differential and is usually denoted by ∂ f (Y ).

Clearly, the set ∂ f (Y ) is closed convex, since by definitionM ∈ ∂ f (Y ) if and only ifM satisfies a certain infinite system of
weak linear inequalities. If f is convex, then it is continuous in the domain and its sub-differential is nonempty and compact.
Especially, if it is differentiable, then the element of its sub-differential is unique and amounts to its gradient. One significant
function of the sub-differential is to verify whether the optimality condition of an unconstrained problem minY∈Rn×n f (Y ) is
satisfied, i.e., 0 ∈ ∂ f (Y ). In other words, it follows that

∇̃f (Y ∗) = 0,

where ∇̃f (Y ∗) denotes the sub-gradient of f (Y ) at the minimum Y ∗ and 0 is the n × n zero matrix.
Next, we review the classical ALM for the problem (1.1). For convenience, let

Ω =
{
Y ∈ Rn×n

| Y ∈ Sn
+
, rank(Y ) ≤ r

}
.

For any µ > 0, the augmented Lagrangian function of (1.1) is given by

Lµ(Y , λ) = L(Y , λ) +
µ

2
[g(Y )]2,



Download	English	Version:

https://daneshyari.com/en/article/5776071

Download	Persian	Version:

https://daneshyari.com/article/5776071

Daneshyari.com

https://daneshyari.com/en/article/5776071
https://daneshyari.com/article/5776071
https://daneshyari.com/

