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a b s t r a c t

The approximation properties of a quadratic iso-parametric finite element method for a
typical cavitation problem in nonlinear elasticity in two dimensions are analyzed. More
precisely, (1) the finite element interpolation errors are established in terms of the mesh
parameters; (2) a mesh distribution strategy based on an error equi-distribution principle
is given; (3) the convergence of finite element cavity solutions is proved. Numerical
experiments show that, in fact, the optimal convergence rate can be achieved by the
numerical cavity solutions.
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1. Introduction

Nonlinear soft elastic materials, such as polymers, biological tissues, rubbers, etc., can display a particular singular
deformation, referred to in the literature as cavitation, when strong external force is applied [1–5]. The occurrence and
growth of cavities is considered closely related to the material instability and to the damage and failure mechanisms of
the materials [6–10]. A huge amount of work has been done by numerous authors analyzing cavitation experimentally,
theoretically as well as numerically.

Generally speaking, there are two representative approaches characterizing cavitation. One is the so-called defect model,
which is based on the hypothesis that cavities grow from pre-existing micro defects. Under this assumption, Gent and
Lindley [3] analyzed the critical hydrostatic pressure at which a given unit spherical void in an infinite extension of a
Neo-Hookean material would blow up, which was in a good agreement with their experiments therein. The other is the
perfectmodel established by Ball [11] based on the analytical evidence that, under certain circumstances, a deformationwith
cavities created in an originally intactmaterial can be energetically favorable. It is shown that, under the assumption that the
cavities can appear only at a finite number of fixed points in the intact materials, the solution of the defect model converges
to the solution of the perfect model [12,13] as the radii of the pre-existing small voids go to zero. In addition, analytical

✩ The research was supported by the NSFC projects 11171008 and 11571022.

* Corresponding author.
E-mail address: lizp@math.pku.edu.cn (Z. Li).

http://dx.doi.org/10.1016/j.cam.2017.09.006
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.09.006
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.09.006&domain=pdf
mailto:lizp@math.pku.edu.cn
http://dx.doi.org/10.1016/j.cam.2017.09.006


C. Su, Z. Li / Journal of Computational and Applied Mathematics 330 (2018) 630–647 631

and numerical evidences indicate that whether a point can serve as a possible position of cavitation can be evaluated by
calculating the corresponding configurational forces [14,15].

The perfect model typically exhibits the Lavrentiev phenomenon [16] when there is a cavitation solution, leading to the
failure of the conventional finite element methods [17,18]. Though there are existing numerical methods developed to deal
with the Lavrentiev phenomenon [17–20], they do not seem to be suitable to tackle the cavitation problem. In fact, most of
the numerical studies on cavitation are based on the defect model, in which one considers to minimize the total energy of
the form

E(u) =

∫
Ωϱ

W (∇u(x))dx, (1.1)

in the set of admissible functions

A = {u ∈ W 1,p(Ωϱ;Rn) is one-to-one a.e. : u|Γ0
= u0, det∇u > 0 a.e.}, (1.2)

where Ωϱ = Ω \
⋃m

i=1Bϱi (ai) ⊂ Rn (n = 2, 3) denotes the region occupied by an elastic body in its reference configuration,
Bϱi (ai) = {x ∈ Rn

: |x− ai| < ϱi} is the pre-existing spherical hole centered at ai with small radius ϱi > 0,W : Mn×n
+ → R+

is the elastic stored energy density of the material, Mn×n
+ denotes the set of n × n matrices with positive determinant, Γ0 is

the boundary of Ω .
A typical example of the elastic stored energy density is of the form

W (F ) = ω|F |
p
+ g(det F ), ∀F ∈ Mn×n

+
, (1.3)

where ω > 0 is a material constant, n− 1 < p < n, and g : (0, ∞) → (0, ∞) is a continuously differentiable strictly convex
function characterizing the compressibility of the material and satisfies

g(d) → +∞ as d → 0, and
g(d)
d

→ +∞ as d → +∞. (1.4)

As was shown by Ball [11], this kind of functional can have a singular minimizer displaying cavitation. Further studies on the
existence of singular minimizers in Sobolev spaces are referred to [12,21,22].

One of the main difficulties in the computation of immense growth of voids is the orientation-preservation of the
finite element deformation, which is a crucial constraint and is characterized by the pointwise positivity of the Jacobian
determinant of the deformation gradient. For the conforming piecewise affine finite element, the condition leads to an
unbearably large amount of degrees of freedom [23]. To overcome this difficulty, Lian and Li [24] proposed a dual-parametric
finite element method for the symmetric cavitation problem and a quadratic iso-parametric finite element method for
cavitation problems which allow multiple unsymmetrical prescribed defects of various shapes and sizes [25]. Xu and
Henao [23] established a penalized non-conforming finite elementmethodwhich is successfully applied to the computation
of multiple cavities with sacrifice on the approximation accuracy near the cavities surface. However, strict analytical results
are insufficient. The only practical analytical results for the cavitation computation known to the authors so far are [26],
where a sufficient orientation-preservation condition and the interpolation error estimateswere given for a dual-parametric
bi-quadratic finite elementmethod, and [27], where a set of sufficient and necessary orientation-preservation conditions for
the quadratic iso-parametric finite element interpolation functions of radially symmetric cavity deformations are derived.

In this paper, we analyze the approximation properties of a quadratic iso-parametric finite element for the typical
cavitation problem. The analytical results on the errors of finite element interpolation functions lead to a delicate relationship
between the elastic energy error and themesh parameters, which togetherwith the orientation-preservation conditions (see
Remark 3.4 and [27]) enable us to establish a mesh distribution strategy guaranteeing that the corresponding finite element
cavitation solution is orientation preserving and its relative error on the elastic energy is O(h2), where h is the mesh size in
the far field, i.e. a given distance away from the cavity. Above all, for the first time to our knowledge, the convergence of the
finite element cavitation solutions in W 1,p norm is proved, inspired by the recent important results on the convergence of
energyminimizing sequences in nonlinear elasticity [28,29]. In fact, the numerical experiments show that the optimal order
of convergence rate is achieved by the numerical cavitation solutions obtained on the meshes produced by our meshing
strategy.

Since the cavitation solution is generally considered to be quite regular except in a neighborhood of the voids, where
the material experiences extremely large expansion dominant deformations and the difficulty of the computation as well
as analysis lies, we restrict ourselves to a simplified problem with Ωϱ = B1(0) \ Bϱ(0) in R2 and a simple expansionary
boundary condition given by u0 = λx. The results however can be extended to more general cases with much more tedious
calculations, which we do not regard as a main concern of the present paper (see also Remark 4.4).

The structure of the paper is as follows. In Section 2, we introduce the iso-parametric finite element method and a
radially symmetric large expansion accommodating triangulation method briefly. Section 3 is devoted to analyzing the
interpolation errors of the cavitation solutions. The meshing strategy is given in Section 4, where the convergence theorem
is also established. The numerical results are presented in Section 5. Some concluding remarks are made in Section 6.
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