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h i g h l i g h t s

• New hybrid optimisation scheme.
• Optima are removed from objective function by deflation.
• Resulting algorithm combines strength of local and global optimisation schemes.
• Algorithm finds multiple solutions if they exist.
• Algorithm outperforms genetic algorithms and traditional hybrid methods.
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a b s t r a c t

Optimisation is a basic principle of nature and has a vast variety of applications in research
and industry. There is a plurality of different optimisation procedures which exhibit
different strengths and weaknesses in computational efficiency and probability of finding
the global optimum. Most methods offer a trade-off between these two aspects. This paper
proposes a hybrid genetic deflated Newton (HGDN)method to find local and global optima
more efficiently than competing methods. The proposed method is a hybrid algorithm
which uses a genetic algorithm to explore the parameter domain for regions containing
local minima, and a deflated Newton algorithm to efficiently find their exact locations. In
each iteration, identifiedminima are removed using deflation, so that they cannot be found
again. The genetic algorithm is adapted as follows: every individual of every generation of
offspring searches its adjacent space for optima using Newton’s method; when found, the
optimum is removed by deflation, and the individual returns to its starting position. This
procedure is repeated until no more optima can be found. The deflation step ensures that
the same optimum is not found twice. In the subsequent genetic step, a new generation
of offspring is created, using procreation of the fittest. We demonstrate that the proposed
method converges to the global optimum, even for small populations. Furthermore, the
numerical results show that the HGDN method can improve the number of necessary
function and derivative evaluations by orders of magnitude.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the
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1. Introduction

Optimisation is one of the most fundamental principles of nature. Most physical principles can be formulated in the
structure of an optimisation problem. Additionally, inversions, like seismic tomography andweather predictions, are typical
optimisation problems. It is therefore important to develop efficient methods to optimise functions. This paper is concerned
with the problem of finding the local and global minimisers {x∗

} of a real-valued function f : Rn
→ R. More precisely, we

are seeking points x∗
∈ Rn for which the optimality condition

f (x∗) ≤ f (x) ∀x ∈ Rn
: ∥x − x∗

∥ < r (1)

holds for a sufficiently small r > 0. The search for maxima is analogous and will be treated accordingly. The objective
function f can be highly non-linear, but we assume that it is continuous and at least twice differentiable. In many practical
applications, evaluating f or its derivatives involves computationally expensive operations, such as the solution of a
discretised partial differential equation. Therefore, it is crucial to solve the problem with as few functional and derivative
evaluations as possible.

Solving problem (1) is numerically challenging, because f can have multiple local and global optima. Local knowledge
about the function, such as evaluations and derivatives, is therefore not sufficient to find the global solution or to identify
whether an optimum is a local or a global optimum [1]. Hence, existing local optimisation methods cannot be applied
directly. Instead, a solution strategy must explore the global parameter space. Genetic algorithms and simulated annealing
are popular methods that use randomised search strategies motivated from natural processes. They are robust, find the
proximity of the optimal solutions in a reasonable time for a small number of dimensions, are parallelisable and easy to
implement [2,3]. Furthermore, theyhave little assumptions on the objective function f . However, they requiremany function
evaluations, especially in high dimensional spaces. To improve the efficiency, hybrid schemes have been proposed which
combine the efficiency of local optimisation methods with the generality of global methods [4–7]. Renders and Flasse [7]
in particular showed that hybrid methods can offer a significant improvement compared to genetic algorithms. We are
referring to these hybrid methods as traditional hybrid methods in the course of the paper.

This paper presents a new hybrid optimisation method that combines a genetic algorithmwith a fast, local optimisation
method. The algorithm is based on two basic components: a global search method based on the genetic algorithm, and a
local searchmethod. For the local search, we employ a deflated Newton scheme [8]. The deflated Newtonmethod efficiently
identifies multiple local minima or maxima in proximity of the starting point, and deflates the function accordingly. As a
result, a smaller population size is sufficient to efficiently map the local and global optima of f , which we show, can result
in a significant performance increase of the overall algorithm. The key to the success of the deflated Newton method is
that the found optima are ‘‘removed’’, meaning that a deflation is placed where the optimum was located. A subsequent
Newton search will not converge to the same point, but will find another optimum or diverge, meaning that there are no
optima in the vicinity of the individual. This leads to a performance gain of the overall algorithm compared to traditional
hybrid methods. The following genetic algorithm will relocate the individuals by using procreation of the fittest. In the
new locations, all offspring individuals will again start the search for optima. The proposed method is easy to implement
because existing implementations of genetic and local optimisation methods can be reused. The overall goal is to minimise
the required function and derivative evaluations to find local and global optima of a function.

The remainder of the paper is organised as follows. In Section 2, the ingredients of the proposed method are mentioned
and explained briefly. The following sections will give some information about global and local optimisation schemes. Next,
it is explained how these methods work together to form the basis of the proposed hybrid method. Afterwards, the method
of deflation is described and used to improve the existing hybrid methods. The proposed method was applied in several
standard problems and benchmarked against genetic and traditional hybrid optimisation methods. The numerical results
are shown in Section 3.

2. Methodology and theory

Two classes of methods exist when it comes to optimising functions: local methods and global methods. In most fields,
the use of either local or global methods means a trade-off between computing time and probability of finding the global
optimum. This sectionwill give an introduction to local and global optimisation schemes andwill use them to draw the path
to the proposed method.

2.1. Global methods

Global methods, like the Monte-Carlo method or the genetic algorithm are randomised algorithms and can guarantee to
find the global optimum [9]. For our purposes the genetic algorithm is particularly interesting. This algorithm is inspired by
the natural selection in biological evolution and works as follows. The core of a genetic algorithm is called recombination
and is shown in Algorithm 1. A random population is created and placed in the search space. We refer to a population as
a plurality of chosen points (individuals) in the search space. The fittest individuals have the best chance to procreate and
produce offspring. The fitness in this context is the function value at the point that is associated with a certain individual.
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