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a b s t r a c t

In this article, we discuss an adaptive strategy of implementing trapezoidal rule for evalu-
ating Hadamard finite-part integrals with kernels having different singularity. The purpose
is to demonstrate cost savings and fast convergence rates engendered through adaptivity
for the computation of finite-part integrals. The error indicators obtained from the a pos-
teriori error estimate are used for mesh refinement. Numerical experiments demonstrate
that the a posteriori error estimate is efficient, and there is no reliability-efficient gap.
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1. Introduction

Consider the finite-part integral (see, e.g., [1–3])

Iu(y; s) = =

 b

a

u(x)
|x − y|1+2s

dx, s ∈ (0, 1) (1)

with some arbitrary, but fixed y ∈ (a, b), where =


denotes an integral in the Hadamard finite-part sense:

=

 b

a

u(x)
|x − y|1+2s

dx = lim
ϵ→0


Ωϵ

u(x)
|x − y|1+2s

dx −
u(y)
sϵ2s


, (2)

whereΩϵ = (a, b)\(y−ϵ, y+ϵ). The function u(x) is said to be finite-part integrablewith respect to theweight |x−y|−1−2s

if the limit on the right hand side of (2) exists.
Integrals of this kind appear in many practical problems related to aerodynamics, wave propagation or fluid mechanics,

mostly with relation to boundary element methods(BEMs) and finite-part integral equations [2]. Numerous work has
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been devoted in developing the efficient numerical evaluation method, such as Gaussian method [4,5], Newton–Cotes
method [6,1,7–9], and some other methods [10–12]. Amongst them, Newton–Cotes rule is a popular one due to its ease
of implementation and flexibility of mesh.

Error analysis of Newton–Cotes rule for Riemann integrals has been well done. The accuracy of Newton–Cotes rule with
kth order piecewise polynomial interpolant for the usual Riemann integrals is O(hk+1) for odd k and O(hk+2) for even
k. However, the rule is less accurate for finite-part integral (1) due to the hypersingularity of the kernel. For example,
the correspondent result for finite-part integral with first-order singularity (s = 0) [13,14] and second-order singularity
(s =

1
2 ) [1,7,3] is only O(hk). The superconvergence of composite Newton–Cotes rule for finite-part integral (1) with second-

order singularity was investigated in [6,15,3,16], where the higher-order accuracy can be reached on the condition that the
singular point coincides with some a priori known point. Nevertheless, adaptivity, which is the topic here, is not covered
in the above references. The key points in the design of adaptive quadrature rules are, first of all, to keep the number of
function evaluations low, and secondly, to divide the domain of integration in such a way that the features of the integrand
function are appropriately and effectively accounted for.

We analyze an h-adaptive Newton–Cotes rule for Hadamard finite-part integrals of the form

Solve → Estimate → Mark → Refine; (3)

see Section 4 for a precise statement. In the context of the finite element method on shape-regular meshes, h-adaptive
algorithms of this type (AFEM) have been analyzed in the last 20 years and are by now fairly well understood [17–22]. The
situation is considerably less developed for Newton–Cotes rule for hypersingular integrals [23]. While several a posteriori
error estimators for Riemann integrals are available in the literature (see [24–26] and the references therein), and numerous
numerical studies indicate superiority of adaptive algorithms, an h-adaptive Newton–Cotes rule for Hadamard finite-part
integrals still appears to be missing. Such an analysis is the main topic of the present paper.

In this paper, we construct the first-order composite Newton–Cotes rule (trapezoidal rule) for Hadamard finite-part
integrals of the form (1), establish a posteriori error estimators of residual-type for different singular integral kernels, and
design an h-adaptive algorithm based on these estimators. Finally, by means of a series of numerical experiments, we
demonstrate that the proposed adaptive quadrature is capable of generating highly accurate approximations at a very low
computational cost.

The rest of the paper is organized as follows. Section 2 introduces the precise notation of general (composite) trapezoidal
rule for Hadamard finite-part integrals (1). Section 3 presents a priori and a posteriori error estimates analysis. Section 4
gives details of adaptive algorithms of the trapezoidal rule. Some numerical experiments demonstrate the efficiency of the
a posteriori error estimates in Section 5.

2. Construction of the composite trapezoidal rule for (1)

As mentioned before, many researchers has made a lot of contributions to composite Newton–Cotes rule for finite-part
integrals (see [6,1,7,8]), but all of these works are limited to the situation s =

1
2 . Until recently, a nodal-type trapezoidal rule

is developed for (1) with s ∈ [0, 1) in [9], where the singular point y is always chosen to be located at certain nodal point. In
this section, we will derive the (composite) trapezoidal rule for (1) in the case that y is always located in a certain element.

Let

a = x0 < x1 < · · · < xn−1 < xn = b

be the partition of [a, b] with hi = xi+1 − xi being the length of the element ei = (xi, xi+1), i = 0, 1, . . . , n − 1. Denote
h = max0≤i≤n−1 hi the size of the partition. The notation A . B abbreviates A ≤ C ·Bwith some generic constant 0 ≤ C < ∞,
which does not depend on h. We also assume that y ∈ em for certainm satisfying 0 ≤ m ≤ n − 1.

Denote the piecewise linear Lagrange interpolant of u(x) by

πhu(x) =

n
i=0

u(xi)ϕi(x), (4)

where ϕi(x) is the piecewise linear hat function, i.e.,

ϕi(x) =


x − xi−1

hi−1
, x ∈ [xi−1, xi],

xi+1 − x
hi

, x ∈ [xi, xi+1],

0, otherwise,

i = 1, . . . , n − 1,

and

ϕ0(x) =

x1 − x
h0

, x ∈ [x0, x1],

0, otherwise,
ϕn(x) =

x − xn−1

hn−1
, x ∈ [xn−1, xn],

0, otherwise.
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