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A BOUNDARY PRESERVING NUMERICAL SCHEME FOR THE

WRIGHT-FISHER MODEL

I. S. STAMATIOU

Abstract. We are interested in the numerical approximation of non-linear stochastic di�er-
ential equations (SDEs) with solution in a certain domain. Our goal is to construct explicit
numerical schemes that preserve that structure. We generalize the semi-discrete method
Halidias N. and Stamatiou I.S. (2016), On the numerical solution of some non-linear sto-
chastic di�erential equations using the Semi-Discrete method, Computational Methods in
Applied Mathematics,16(1) and propose a numerical scheme, for which we prove a strong
convergence result, to a class of SDEs that appears in population dynamics and ion chan-
nel dynamics within cardiac and neuronal cells. We furthermore extend our scheme to a
multidimensional case.

1. Introduction

Let T > 0 and (Ω,F , {Ft}0≤t≤T ,P) be a complete probability space and let Wt,ω :
[0, T ]×Ω→ R be a one-dimensional Wiener process adapted to the �ltration {Ft}0≤t≤T .We
are interested in the numerical approximation of the following scalar stochastic di�erential
equation (SDE),

(1.1) xt = x0 +

∫ t

0

(k1 − k2xs)ds+ k3

∫ t

0

√
xs(1− xs)dWs,

where ki > 0, i = 1, 2, 3. A boundary classi�cation result, see Appendix A, implies that
0 < xt < 1 a.s. when x0 ∈ (0, 1) and 0 < k1 < k2. We therefore aim for a numerical scheme
which apart from strongly converging to the true solution of (1.1), produces values in the
same domain, i.e. in (0, 1). In other words, we are interested in numerical schemes that have
an eternal life time.

De�nition 1.1 [Eternal Life time of numerical solution] Let D ⊆ Rd and consider a process
(Xt) well de�ned on the domain D, with initial condition X0 ∈ D and such that

P({ω ∈ Ω : X(t, ω) ∈ D}) = 1,

for all t > 0. A numerical solution (Ytn)n∈N has an eternal life time if

P(Yn+1 ∈ D
∣∣Yn ∈ D) = 1.

2

In [1] the main interest is in the domain D = R+. Moreover, it is clear that the Euler-
Maruyama scheme has always a �nite life time.
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