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FINITE ELEMENT METHOD FOR A SPACE-FRACTIONAL ANTI-DIFFUSIVE
EQUATION

AFAF BOUHARGUANE

ABSTRACT. The numerical solution of a nonlinear and space-fractional anti-diffusive equation used
to model dune morphodynamics is considered. Spatial discretization is effected using a finite element
method whereas the Crank-Nicolson scheme is used for temporal discretization. The fully discrete
scheme is analyzed to determine stability condition and also to obtain error estimates for the approxi-
mate solution. Numerical examples are presented to illustrate convergence results.

1. INTRODUCTION

We consider the Fowler equation [7]

(1.1) ∂tu(t, x) + ∂x

(
u2

2

)
(t, x)− ∂2

xu(t, x) + I[u](t, x) = 0, x ∈ R, t > 0,

where I is a nonlocal operator defined as follows: for any Schwartz function ϕ ∈ S(R) and any
x ∈ R,

(1.2) I[ϕ](x) :=

∫ +∞

0
|ξ|− 1

3ϕ′′(x− ξ) dξ.

The Fowler equation was introduced to model the formation and dynamics of sand structures such
as dunes and ripples [7]. This equation is valid for a river flow over an erodible bottom u(t, x) with
slow variation. Its originality resides in the nonlocal term, which is anti-dissipative, and can be seen
as a fractional Laplacian of order 4/3. Indeed, it has been proved in [2] that

F(I[ϕ])(ξ) = −4π2Γ(
2

3
)

(
1

2
− isgn(ξ)

√
3

2

)
|ξ|4/3F(ϕ)(ξ),

where Γ is the gamma function and F denotes the Fourier transform.
Therefore, this term has a deregularizing effect on the initial data but the instabilities produced by
the nonlocal term are controled by the diffusion operator −∂2

x which ensures the existence and the
uniqueness of a smooth solution [2]. We then always assume that there exists a sufficiently regular
solution u(t, x).
The use of Fourier transform is a natural way to study this equation but it also can be useful to
consider the following formula:
for all r > 0 and all ϕ ∈ S(R),

I[ϕ](x) = I1[ϕ](x) + I2[ϕ](x),(1.3)
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