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1. Introduction

In many scientific and engineering applications, it is very important to compute the eigenfunctions and eigenvalues for
differential equations. In this paper, we solve the elliptic eigenvalue problems with rough coefficients using Generalized
Multiscale Finite Element Method (GMsFEM). The general theory of the numerical eigenvalue problems can be found in the
literatures [ 1-4].

For the eigenvalue problem of partial differential equations, a popular numerical method is using finite element method.
The work [5] presents the finite element discretization of eigenvalue problems for an elliptic partial differential operator
and provides its error analysis. In [ 1], there is a direct proof of convergence for eigenvalues and eigenfunctions of the Laplace
equation approximated with piecewise linear elements, which is based on basic properties of the Rayleigh quotient. In many
works, the priori error estimates are based on the hypothesis that the mesh-size is sufficiently small. Knyazev and Osborn
in [6] have overcome this difficulty and presented the first truly a priori error estimate for symmetric eigenvalue problems.
For the a posteriori and a priori error analysis for finite element approximation of self-adjoint elliptic eigenvalue problems,
we can refer to [7-10]. They have given the error analysis of multiple eigenvalues and simple eigenvalues. The works have
also proved that a posteriori error estimates for a general nonsymmetric eigenvalue problem are obtained without the
requirement of H?-regularity. There are many methods to compute eigenvalues and eigenfunctions for a matrix, such as
Jacobi method [11], the power method [12], Arnoldi-type iterations and QR-algorithm [13-15]. Although those methods
are efficient for solving the matrix eigenvalue problems, there exists some limitation when the matrix is derived through
the discretization of multiscale models. In these situations, the associated matrix may be very large-scale if standard finite
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element is used to resolve all scales of the models. In these circumstances, it may be infeasible to compute the eigenvalue
problems directly.

In order to avoid the application of any eigenvalue solver to the very fine scale discretization (2.8) directly, multigrid
methods can be helpful. As early as 1985, W. Hackbusch in [16] has proposed a multigrid iteration, which approximates
simultaneously eigenvalues and the associated vectors. The matrix may be unsymmetric or even not diagonalizable. The
algorithm is based on a Newton iteration converging to a sub-matrix of the Schur normal form. Based on the finite element
method and iteration, W. Hackbusch [17], Xie [18], Xu et al. [19] have proposed multigrid methods to solve eigenvalue
problems. These methods showed that the solution of the eigenvalue problem on a fine grid is reduced to the solution on
a much coarser grid, which only needs a small amount of computational work and the asymptotically optimal accuracy is
well maintained. There are also other methods to solve the eigenvalue problem without iteration.

During the last decades, various multiscale methods have been developed [20-24]. The main idea of multiscale method
is to divide the fine scale problem into many local problems and use the solutions of the local problems to form a coarse
scale equation (refer to [24]). Among these multiscale methods, multiscale finite element method (MsFEM) [21] is one
of the efficient approaches. The basic idea of MSFEM is to incorporate the small-scale information to multiscale basis
functions and capture the impact of small-scale features on the coarse-scale through a variational formulation. MSFEM
can be used to efficiently compute multiscale eigenvalue problems and avoid computing the large-scale problem directly.
The authors in [25] discussed the multiscale finite element computation of a Steklov eigenvalue problem with rapidly
oscillating coefficients and derived corresponding convergence results. Axel et al. [26] considered benchmark multiscale
eigenvalue problems by computing a low-dimensional generalized (possibly mesh free) finite element space that preserves
the lowermost eigenvalues in a superconvergent way. After solving the corresponding low-dimensional algebraic eigenvalue
problem, the approximate eigenpairs are then obtained.

Although these multiscale methods can give accurate solutions in some cases, there are applications where these
approaches are inadequate and some enhancements are needed. In particular, one may need to use multiple basis functions
per coarse block to capture complex heterogeneities and continuum scales in the solutions. To this end, a generalized
multiscale method has been developed in the framework of generalized finite element method [27,28] by the name of
generalized multiscale finite element method (GMSFEM) [29,30]. The construction of multiscale basis functions relies on
the choice of suitable snapshot space and dimension reduction procedure by solving local spectral problems. In this paper,
we will use GMSFEM to solve elliptic eigenvalue problems with rough coefficients. The computation for the eigenvalue
problems is performed on a coarse grid. This leads to an algebraic eigenvalue problem in coarse scale. It is desirable for
any usual linear eigenvalue solvers. Using the multiscale basis functions, we can downscale the coarse scale eigenfunctions
to fine scale eigenfunctions, which provide accurate approximation of eigenfunctions. We present rigorous convergence
analysis for GMSFEM approximation of elliptic eigenvalue problems. The theoretic analysis and numerical results show that
the convergence is independent of the contrastness of the rough coefficient. As far as we know, there are very few literatures
to rigorously study the eigenvalue problems using GMsFEM.

The paper is organized as follows. In Section 2, we give some preliminaries and a short introduction to generalized
multiscale finite element method. Section 3 is devoted to error estimates for eigenfunction and eigenvalue using GMsFEM
approximation. In this section, we give the error analysis of eigenfunction in the energy norm and L?-norm. By the definition
of Rayleigh quotient, convergence analysis is presented for the eigenvalues as well. In Section 4, some numerical examples
are given to confirm the theoretical analysis. Finally, some conclusions and comments are outlined in the last section.

2. Preliminaries and GMSFEM

In this section, we first introduce some notations used for the paper and then present GMSFEM. Let £2 C RY (d > 1)
be a polyhedral, bounded domain with Lipschitz boundary 942. In the paper, we consider the following elliptic eigenvalue
problem,

—div(x(x)Vu) = Au in £2
{ u=0 onds. (2.1)

Here the coefficient «(x) € L°°(£2) is uniformly bounded below and above, i.e., there exists 0 < « < B < oo such that
a<k(x)<pB, Vxef. (2.2)

The ratio g characterizes the contrastness of the diffusion coefficient.
Let W;‘(Q) be the usual Sobolev space with norm || - || wh@) In particular, we write H*(£2) = Wé‘(.Q) andIP(2) = WI?(.Q).
We denote

HY(2):={v e [3(£2): Vv € [}(2)}
and

Hy(2) = {v e H(R2) : vy = 0}.
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