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a b s t r a c t

A new phase fitted Runge–Kutta pair of orders 8(7) which is amodification of a well known
explicit Runge–Kutta pair for the integration of periodic initial value problems is presented.
Numerical experiments show the efficiency of the new pair in a wide range of oscillatory
problems.
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1. Introduction

For the numerical solution of the initial value problem

y′
= f (x, y), y(x0) = y0 ∈ ℜ

m, x ∈ [x0, xe] (1)

where f : ℜ×ℜ
m

→ ℜ
m, the Explicit Runge–Kutta (RK) pairs are widely used. Such pairs can be presented by the extended

Butcher tableau [1,2]:
c A

b
b̂

with bT , b̂T , c ∈ ℜ
s and A ∈ ℜ

s×s is strictly lower triangular. Such methods advance the solution from xn to xn+1 = xn + hn
using the following two approximations at each step, yn+1, ŷn+1 to y(xn+1) of orders p and p − 1 respectively,

yn+1 = yn + hn

s
i=1

bifni
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and

ŷn+1 = yn + hn

s
i=1

b̂ifni,

where

fni = f


xn + cihn, yn + hn

i−1
j=1

aijfnj


for i = 1, 2, . . . , s. Using this embedded formwe can obtain an estimate En+1 =

yn+1 − ŷn+1
 of the local truncation error

of the p−1 order formula. Then the next step of the numerical solution can be computed using a step-size control algorithm

hn+1 = 0.9 · hn ·


TOL
En+1

1/p

, (2)

where TOL being the requested tolerance. If En+1 > TOL the step hn computed to advance the approximation of the solution
from xn to xn+1 is rejected and the same formula (2) is assumed to recompute the new smaller current step. In (2) the 0.9 is
a safety factor that is used so that the error will be acceptable the next time with high probability. For more details on the
implementation of these types of step size policies see [2,3].

2. Basic theory

When a RK method is applied to solve the test problem

y′
= iωy, ω ∈ ℜ, i =

√
−1, (3)

we are led to the numerical scheme

yn+1 = P (iωhn) yn,

hn = xn+1 − xn, where the function P (iv) = P (iωh) satisfies the relation

P (iv) = 1 + ivb (I − ivA)−1 e =

∞
j=0

tj (iv)j , (4)

and for j ≥ 1, tj = bAj−1e, t0 = 1 and e = [1, 1, . . . , 1] ∈ ℜ
s [4]. The quantities tj depend only on the coefficients of the

method. For explicit methods (e.g. A strictly lower triangular), the above sum in the determination of P (iv) is finite and j
runs from 0 to s.

Following [5],we define the phase-lag (or dispersion) order of a RKmethod as the order of approximation of the argument
of the exponential function by the argument of P along the imaginary axis. Equivalently, the phase-lag order of a method is
q, whenever δ (v) = O


vq+1


, for δ (v) = v − arg (P (iv)). We define also, the imaginary stability interval of a RK method

II = (0, v0) by the relations |P (iv)| < 1 and |P (i (v0 + θ))| > 1, for every v ∈ II and every suitably small positive θ . When
a method has a non-vanishing imaginary stability interval then it is called dissipative.

Even though in the definition for a RKmethod the phase-lag property is based on the solution of a special problem (3), the
numerical tests presented in [6,4] strongly indicated that the RKpairs of high phase-lag order exhibit a remarkable numerical
performance on a much wider class of test problems. Especially for a certain class of initial value problems (as those whose
solutions are described by free oscillations or free oscillations of low frequency with forced oscillations of high frequency
superimposed, over long integration intervals), one should use pairs of methods of high phase-lag order with minimized
leading truncation error coefficients instead of pairs of the same algebraic order which attain the minimal algebraic order
and phase-lag order allowed by the number of method’s stages.

3. Methods with known frequency

Gautschi [7] has been the first who tried to fit a method to a set of linearly independent trigonometric functions. Since
then a lot of methods trying to do something similar have been constructed. Here we will exploit the knowledge of v = ωh
in the direction of the ideas presented in the previous section.

We observe that

P (iv) = Q (v) + iR (v)

=

1 − t2v2

+ t4v4
− t6v6

± · · ·

+ i


v − t3v3

+ t5v5
− t7v7

± · · ·


which is a finite series for explicit methods, as we have mentioned.
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