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a b s t r a c t

A singularly perturbed parabolic equation of convection–diffusion type is examined. Ini-
tially the solution approximates a concentrated source. This causes an interior layer to form
within the domain for all future times. Using a suitable transformation, a layer adapted
mesh is constructed to track themovement of the centre of the interior layer. A parameter-
uniform numerical method is then defined, by combining the backward Euler method and
a simple upwinded finite difference operator with this layer-adapted mesh. Numerical re-
sults are presented to illustrate the theoretical error bounds established.
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1. Introduction

Singularly perturbed convection–diffusion parabolic problems can be viewed as simple mathematical models of some
pollutant being transported through a fast flowing medium. In this paper, we consider a model, where the width of the
initial profile of the pollutant concentration approximates a point source.

In the case of smooth data, boundary layers can appear in the solutions of singularly perturbed parabolic problems.
Globally accurate parameter-uniform numerical approximations [1] to the solutions of these kinds of problems can be con-
structed using layer-adapted meshes such as piecewise-uniform Shishkin meshes [2]. In the case of non-smooth data, addi-
tional interior layers can appear in the solution [3]. If the initial condition is discontinuous, then parameter-uniform globally
accurate numerical methods do not exist for such problems [4,5].

In [6] we constructed and analysed a numerical method for a problem with a regularized step-function as the initial
profile. In the current paper, the methodology (in both the construction and the associated theoretical analysis) is extended
to a singularly perturbed convection–diffusion parabolic problem with a regularized delta-function as the initial profile.

The width of the layer in the regularized initial condition in [6] was directly related to the scale of the singular
perturbation parameter ε contained within the differential equation. In the current paper, we examine the case of a layer
in the initial condition having a potentially different scale to, what we shall call, the normal scale of O(

√
ε). The normal

scale is the scale of an interior layer emanating from a singularly perturbed parabolic equation of the form −εzyy + zt = 0
[4,5], where the interior layer is moving (in time) along a direction orthogonal to the y-coordinate axis. Here we examine an
initial condition involving a Gaussian profile with a standard deviation determined by two parameters ε and θ , where the
value of θ determines how far the width of the pulse deviates from the normal layer width. We see that if the scale of the
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layer in the initial condition (of order O(
√
ε/θ)) is significantly thinner than the normal scale (θ ≫ 1), then large gradients

in time are observed initially and the magnitude of the approximation errors is adversely affected by the presence of this
excessively thin pulse. In addition, we also consider the intermediate case of Cε ≪ θ ≪ C , which lies between the case of
no layer (θ ≤ Cε) and the case of a normal layer width (θ = C) in the initial pulse. In this paper, we highlight how the error
constants (in the theoretical error bounds) depend on this parameter θ . The asymptotic error bound given in Theorem 7,
indicates a degradation in the error bound for the case of θ ≠ O(1). Note that, for any fixed value of the parameter θ , the
numerical method is parameter-uniformly convergent with respect to the singular perturbation parameter ε, present in the
differential equation.

In Section 2 we state the problem class examined in this paper and global parameter-explicit bounds on the solution are
established. A transformation of the domain is introduced in Section 3, which is used to align the mesh with the trajectory
of the interior layer. Sharper pointwise bounds on the partial derivatives of the solution are derived in Section 4, using a
decomposition of the solution into a sum of regular, boundary layer and interior layer components. The numerical scheme
is constructed in Section 5 and theoretical error bounds are established in Section 6. Some numerical results are presented
and discussed in Section 7.

Notation: In this paper C denotes a generic constant that is independent of the parameter ε and the mesh parameters N
andM . For any function z, we set ∥z∥Ḡ := max(s,t)∈Ḡ |z(s, t)|.

2. Continuous problem

Consider the following singularly perturbed parabolic problem: Find û such that

L̂εû = f̂ (s, t), (s, t) ∈ Q := (−1, 1)× (0, T ], where L̂εû := −εûss + â(t)ûs + b̂(s, t)û + ĉ(t)ût , (1a)

û(s, 0) = φ(s; ε), −1 ≤ s ≤ 1, (1b)

û(−1, t) = φL(t), û(1, t) = φR(t), 0 < t ≤ T , (1c)

â(t) > α > 0, ĉ(t) ≥ c0 > 0, (1d)

b̂(s, t) ≥ β ≥ 0, b̂(s, t)+ 2ĉ ′(t) > 0, (s, t) ∈ Q . (1e)

Note that, by using the standard transformation of û = v̂eγ t , we see that (1e) is a mild constraint on the data.
The initial condition φ is smooth, but has an ε-dependent Gaussian profile in the vicinity of s = 0. The initial condition

is assumed to be of the form

φ(s, ε) = g1(s)+ g2(s)e−θ s2
ε , θ > Cε; (1f)

where g1(s), g2(s) are smooth functions with the additional compatibility assumptions of

g(i)2 (−1) = g(i)2 (1) = 0, i = 0, 1, 2. (1g)

These additional assumptions ensure that the pulse e−θ s2
ε has no influence on the smoothness of the solution at the

end-points (−1, 0) and (1, 0).
The case where 0 < θ ≤ Cε is not of interest to us here, as in this case no interior layer will form in the solution. Observe

that as θ/ε → ∞ the width of the pulse narrows and the pulse can be viewed as a regularized delta function. We limit our
investigation of the effect of θ , by restricting the parameter to the case of θ = O(1), so that we assume that

0 < C∗ ≤ θ and
θT
c0

≤ C∗. (1h)

The error constants C in our final error bound do depend on the constant C∗. By assuming that θTc0 ≤ C∗, we can then utilize

the transformation û = v̂e
2θ t
c0 so that there is no further loss in generality in assuming the constraint

b̂ ≥ 2θ > 0, (s, t) ∈ Q .

The characteristic curve associated with the reduced differential equation (formally set ε = 0 in (1a)) can be described
by the set of points

Γ ∗
:=


(d(t), t) | d′(t) =

â(t)
ĉ(t)

, d(0) = 0

.

Note that d′(t) > 0, which implies that the centre of the pulse moves rightwards with time.
We also define the two subdomains of Q either side of Γ ∗ by

Q−
:= {(s, t) ∈ Q | s < d(t) < 1} and Q+

:= {(s, t) ∈ Q | s > d(t) > −1}.
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