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a b s t r a c t

This paper studies the estimation for a class of partially linear models with longitudinal
data. By combining quadratic inference functions with QR decomposition technology, we
propose a new estimation method for the parametric and nonparametric components.
The resulting estimators for parametric and nonparametric components do not affect
each other, and then it is easy for application in practice. Under some mild conditions,
we establish some asymptotic properties of the resulting estimators. Some simulation
studies are undertaken to assess the finite sample performance of the proposed estimation
procedure.
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1. Introduction

In practice, longitudinal data arise frequently in biomedical research where data are observed at irregular and possibly
subject-specific time points. In order to explore possible dependent effects, partially linear models have been proposed
for longitudinal data analysis. For example, Fan and Li [1] proposed a difference based method and a profile least squares
method for estimating the regression coefficients. Xue and Zhu [2] proposed an empirical likelihood method for estimating
the regression coefficients. Bai et al. [3] proposed a quadratic inference function based estimation method to obtain an
efficient estimator for the parametric components. More works on inferences of partially linear models with longitudinal
data can be found in Lin and Carroll [4], He et al. [5], Hu et al. [6], and among others. Inmost of the literature listed above, the
estimation procedure of parametric component was obtained by involving the information of nonparametric components,
such as the profile least squares estimation method proposed in [1] and the empirical likelihood method proposed in [2].
This motivates us to develop a new estimation method, which can separately estimate the parametric components and
nonparametric components, and spends comparable computational cost.

More specifically, we propose an orthogonality estimation approach using QR decomposition technology and quadratic
inference functions. The proposed estimation procedure allows us to directly incorporate correlation information of
longitudinal data into model building for improving efficiency of regression coefficients. Furthermore, the proposed
procedure can easily be implemented, and the resulting estimators of parametric and nonparametric components do not
affect each other. Under some conditions,we investigate some asymptotic properties of the proposed estimators. In addition,
to demonstrate the finite sample performance of the proposed estimator method, some simulation studies are conducted.
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Orthogonality based estimation is an efficient statistical inference method for semiparametric regression models. This
estimation method can individually estimate the parametric and nonparametric components without losing efficiency, and
has some excellent properties. Recently, Zhao et al. [7] proposed an orthogonality based estimation for semiparametric
varying coefficient partially linear models with heteroscedastic errors. Wu and Zhu [8] proposed an orthogonality based
estimation of moments for linear mixed models. Yang and Yang [9] proposed a statistical inference procedure for varying
coefficient partially nonlinear models based on the orthogonality projection method and the smooth threshold estimating
equations. In this article, we provide a new orthogonality estimation method based on QR decomposition. This is an
additional positive result for the orthogonality technology in the semiparametric regression modeling for longitudinal data
analysis, which extends the application of the orthogonality estimation method.

In addition, the quadratic inference functions (QIF) method, proposed in [10], can avoid estimating the nuisance
correlation structure parameters by assuming that the inverse of the working correlation matrix can be approximated by
a linear combination of several known basis matrices. The OIF method can efficiently take the within-cluster correlation
into account and is more efficient than the GEE method if the working correlation is misspecified. Recently, Qu and Li [11]
applied the QIF method to varying coefficient models with longitudinal data. Bai et al. [3] extended the QIF method to the
semiparametric partial linearmodel. Dziak et al. [12] gave an overview on QIFmethod for longitudinal data. Themoreworks
on QIF method can be found in [13–15], and among others.

The rest of this paper is organized as follows. In Section 2, based on the quadratic inference functions and the QR
decomposition technology, we propose an orthogonality estimation procedure for the parametric and nonparametric
components, and present some asymptotic properties of the resulting estimators. In Section 3, we present some simulation
studies to assess the finite sample performances of the proposed method. The technical proofs of all asymptotic results are
provided in Section 4.

2. Estimation procedure and main results

Consider a longitudinal study with n subjects and mi observations over time for the ith subject (i = 1, . . . , n). For each
observation, we denote Yij is a response, Xij ∈ Rp andUij ∈ R are covariates. Then, the partially linearmodelwith longitudinal
data has the following structure

Yij = XT
ij β + θ(Uij) + εij, i = 1, . . . , n, j = 1, . . . ,mi, (1)

where β = (β1, . . . , βp) is a vector of unknown parameters, θ(u) is an unknown function of u, and εij is the model error
with E(εij|Xij,Uij) = 0. In addition, we assume that covariate Uij ranges over a nondegenerate compact interval, without loss
of generality, which is assumed to be the unit interval [0, 1].

From Schumaker [16], it is known that the nonparametric function θ(u) can be approximated by some basis functions.
More specifically, let B(u) = (B1(u), . . . , BL(u))T be B-spline basis functions with the order of M , where L = K + M , and K
is the number of interior knots. Then, θ(u) can be approximated by

θ(u) ≈ B(u)Tγ , (2)

where γ = (γ1, . . . , γL)
T is a vector of basis functions coefficients. For the sake of simplicity, we introduce some matrix

notations. We denote Zij = B(Uij) = (B1(Uij), . . . , BL(Uij))
T , Zi = (Zi1, . . . , Zimi)

T , Xi = (Xi1, . . . , Ximi)
T , Yi = (Yi1, . . . , Yimi)

T ,
and εi = (εi1, . . . , εimi)

T . Then, model (1) can be rewritten as

Yi ≈ Xiβ + Ziγ + εi, i = 1, . . . , n. (3)

Furthermore, we assume that Zi, i = 1, . . . , n are all column full rank matrices. Recalling the definition of the QR
decomposition of a matrix, the matrix Zi can be decomposed as

Zi = Qi


Ri
0


,

whereQi is ami×mi orthogonalmatrix, Ri is a L×L triangularmatrix, and 0 is a (mi−L)×L zeromatrix.We further partition
Qi as Qi = (Qi1,Qi2), where Qi1 is a mi × L matrix, and Qi2 is a mi × (mi − L) matrix. It is easy to obtain that Zi = Qi1Ri and
Q T
i2Qi1 = 0. Then we have Q T

i2Zi = Q T
i2Qi1Ri = 0. Based on this information, and left multiplying the both sides of Eq. (3) by

Q T
i2 yields

Q T
i2Yi = Q T

i2Xiβ + Q T
i2εi, i = 1, . . . , n. (4)

Note that model (4) is constructed in the orthogonal column space of Zi, and does not depend on the nonparametric
components. Then, invoking model (4), the generalized estimating equations for the parametric components β can be
defined as follows

n
i=1

XT
i Qi2V−1

i Q T
i2(Yi − Xiβ) = 0, (5)
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