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a b s t r a c t

We consider the solution of large linear systems of equations that arise from the dis-
cretization of ill-posed problems. The matrix has a Kronecker product structure and the
right-hand side is contaminated by measurement error. Problems of this kind arise, for
instance, from the discretization of Fredholm integral equations of the first kind in two
space-dimensions with a separable kernel and in image restoration problems. Regulariza-
tion methods, such as Tikhonov regularization, have to be employed to reduce the propa-
gation of the error in the right-hand side into the computed solution. We investigate the
use of the global Golub–Kahan bidiagonalizationmethod to reduce the given large problem
to a small one. The small problem is solved by employing Tikhonov regularization. A reg-
ularization parameter determines the amount of regularization. The connection between
global Golub–Kahan bidiagonalization and Gauss-type quadrature rules is exploited to in-
expensively compute bounds that are useful for determining the regularization parameter
by the discrepancy principle.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Linear ill-posed problems arise in essentially every branch of science and engineering, including in remote sensing,
computerized tomography, and image restoration. Discretization of these problems gives rise to linear systems of equations,

Hx = b, H ∈ RN×N , x, b ∈ RN , (1.1)

with a matrix that has many singular values of different orders of magnitude close to the origin; in particular, H may be
singular. This makes the solution x of (1.1), if it exists, very sensitive to perturbations in the right-hand side b. In applications
of interest to us, the vector b represents available data and is contaminated by an error e ∈ RN that may stem from
measurement and discretization errors. Therefore, straightforward solution of (1.1), generally, does not yield a useful result.

Letb ∈ RN denote the unknown error-free vector associated with b, i.e.,

b =b + e. (1.2)
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We will assume the unavailable system of equations with error-free right-hand side,

Hx =b, (1.3)

to be consistent and denote its solution ofminimal Euclidean normbyx. It is our aim to determine an accurate approximation
ofx by computing an approximate solution of the available linear system of Eq. (1.1). The first step in our solution process
is to replace (1.1) by a nearby problem, whose solution is less sensitive to the error e in b. This replacement is commonly
referred to as regularization. One of the most popular regularization methods is due to Tikhonov [1,2]. In its simplest form,
Tikhonov regularization replaces the linear system (1.1) by the minimization problem

min
x∈RN

{∥Hx − b∥2
2 + µ−1

∥x∥2
2}. (1.4)

Here µ > 0 is a regularization parameter and ∥ · ∥2 denotes the Euclidean vector norm. We will comment on the use of µ−1

instead of µ in (1.4). The minimization problem (1.4) has the unique solution

xµ := (HTH + µ−1IN)−1HTb (1.5)

for any fixed µ > 0. Here and throughout this paper IN denotes the identity matrix of order N . The choice of µ affects how
sensitive xµ is to the error e in b, and how accurately xµ approximatesx. Many techniques for choosing a suitable value of
µ have been analyzed and illustrated in the literature; see, e.g., [3,1,4–6] and references therein. In this paper we will use
the discrepancy principle. It requires that a bound ε for ∥e∥2 be available and prescribes that µ > 0 be determined so that
∥b − Hxµ∥2 = ηε for a user chosen constant η ≥ 1 that is independent of ε; see [1,4,6] for discussions on this parameter
choice method. In the present paper, we will determine a value µ > 0 such that

ε ≤ ∥b − Hxµ∥2 ≤ ηε, (1.6)

where the constant η > 1 is independent of ε.
The computation of a µ-value such that the associated solution xµ of (1.4) satisfies (1.6) generally requires the use of a

zero-finder, see below, and typically ∥b − Hxµ∥2 has to be evaluated for several µ-values. This can be expensive when the
matrix H is large. A solution method based on first reducing H to a small bidiagonal matrix with the aid of Golub–Kahan
bidiagonalization (GKB) and then applying the connection between GKB and Gauss-type quadrature rules to determine an
approximation of xµ that satisfies (1.6) is discussed in [7].

It is the purpose of this paper to describe an analogous method for the situation when H is the Kronecker product of two
matrices, H1 = [h(1)

i,j ] ∈ Rn×n and H2 ∈ Rm×m, i.e.,

H = H1 ⊗ H2 =


h(1)
1,1H2 h(1)

1,2H2 · · · h(1)
1,nH2

h(1)
2,1H2 h(1)

2,2H2 · · · h(1)
2,nH2

...
...

...

h(1)
n,1H2 h(1)

n,2H2 · · · h(1)
n,nH2

 ∈ RN×N (1.7)

with N = mn. Then the GKB method can be replaced by the global Golub–Kahan bidiagonalization (GGKB) method
describedby Toutounian andKarimi [8]. The lattermethod replacesmatrix–vector product evaluations in theGKBmethodby
matrix–matrix operations. It is well known that matrix–matrix operations execute efficiently on many modern computers;
see, e.g., Dongarra et al. [9]. Iterative methods based on the GGKB method therefore can be expected to execute efficiently
on many computers. We will exploit the relation between Gauss-type quadrature rules and the GGKBmethod to determine
a value µ and an associated approximation of the vector xµ that satisfies (1.6). We remark that matrices H with a tensor
product structure (1.7) arise in a variety of applications including when solving Fredholm integral equations of the first
kind in two space-dimensions with a separable kernel, and in imaging restoration problems where the matrix H models a
blurring operator. It is well known that many blurring matrices have Kronecker structure (1.7) or can be approximated well
by a matrix with this structure; see [10–12].

In applications of our solution method described in Section 5 both the matrices H1 and H2 are square. Then H is square.
This simplifies the notation and, therefore, only this situation will be considered. However, only minor modifications of the
method are necessary to handle the situation when one or both of the matrices H1 and H2 are rectangular.

This paper continues our exploration of the application of global Krylov subspace methods to the solution of large-scale
problems (1.1) with a Kronecker structure that was begun in [13]. There a scheme for computing an approximation ofx of
prescribed norm is described. It was convenient to base this scheme on the global Lanczos tridiagonalization method and
use its connection to Gauss-type quadrature rules. The paper focuses on the more common situation that a bound for the
norm of the error e in b is available or can be estimated. Then the regularization parameter µ > 0 can be determined by the
discrepancy principle, i.e., so that the computed solution satisfies (1.6); see [1,4]. The requirement (1.6) on the computed
solution makes it natural to apply the GGKB method to develop an analogue of the approach in [7]. Timings and counts
of arithmetic floating point operations (flops) show the structure-respecting method of the present paper to require less
computing time and fewer flops than the structure-ignoring method described in [7], while giving an approximate solution
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