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a b s t r a c t

We introduce an algorithm which combines ideas of Prony’s approach to recover signals
from given samples with approximation methods. We solve two overdetermined systems
of linear equations with linear programming methods and calculate the zeros of a suitable
‘Prony-like’ polynomial.We get the bandwidthm, the frequencies aswell as the amplitudes
and some other characteristics of the signal. Especially, it is reconstructed if sufficientmany
(at least 2m) samples are given.

If we have too few samples or if they are too much noised, we get an approximation
of the original noiseless signal. Even if we have sufficient many but possible erroneous
samples the obtained signal interpolates at least m of them (usually the low-noised or
noiseless ones) and, of course, all samples if the signal is recovered.

The described method behaves well to moderate sampling errors and is resistant
to outliers in the samples which can be detected, filtered off or corrected during the
calculations to improve the quality of the computed signal.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider a signal hwith finite length,

h(x) :=

m∑
j=1

λjeωjx, (1.1)

with ωj ∈ [−α, 0] + i [−π, π ), ωi ̸= ωj for i ̸= j, α > 0, C ∋ λj ̸= 0. Especially, all zj := eωj lie in a circular ring
Dα := {z ∈ C : e−α

≤ |z| ≤ 1}. Note, that Reωj is the damping factor, Imωj the angular frequency of eωjx and m < ∞ is
called the bandwidth of h.

By hk := h(k), k ∈ N0, we denote sampled values and assume that ϱ := lim supk→∞(hk)1/k < ∞. Consider the z-
transform H ,

H(z) :=

∞∑
k=0

hkz−k (1.2)
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which converges on {z ∈ C : |z| > ϱ}. Replacing hk by its representation from (1.1), we get

H(z) =

m∑
j=1

λj
z

z − zj
=

a(z)
ρm(z)

,

where ρm, ρm(z) =
∏m

j=1(z − zj), is a monic polynomial of degreem called the Prony polynomial, and a is a polynomial with
degree at most m and a(0) = 0. By construction, ρm has only simple zeros. If we know the zj, we get the corresponding ωj
via ωj = Log zj (complex logarithm).

If all ωj are known, then the amplitudes λj, j = 1, . . . ,m, can be obtained from (1.1) as the solution of a system of linear
equations, using the samples as interpolation conditions, see Section 4.

The classical way to determine all zj calculates at first the monomial representation of ρm by using a finite set of given
samples hk and then the zeros of this polynomial [1]. In the real world, the measured values hk contain usually some errors
which may also distort the Prony polynomial. Since already small perturbations of the monomial coefficients may cause
large changes for its zeros, even ifm is small, Prony’s original method is rarely taken in signal processing.

It is possible to avoid the explicit usage of the monomial representation and to reformulate the problem as an eigenvalue
resp. as a singular value problem which is more suited for numerical purposes than Prony’s original method (cf. [2–5] if an
l2-solution is desired, and [6] in a more general context).

Another classicalway constructs the Prony polynomial not in itsmonomial representation, see e.g. [7–14]. Using the given
samples, some authors constructmoments of a weight function. By a Levinson like algorithm a finite sequence {σν}ν=0,...,m of
monic Szegő polynomials resp. its reflection coefficients can be constructed. Then, σm is used as the desired approximation
of the Prony polynomial; the reflection coefficients are the entries of a Hessenbergmatrix fromwhichwe get the zeros of this
polynomial as its eigenvalues. However, this method has some drawbacks, especially if there are unimodular zeros, and the
convergence of these approximations to the ‘true’ zeros of the Prony polynomial resp. Szegő polynomial is not guaranteed.

Existing algorithms which use the Prony polynomial cannot overcome the drawback that noised samples cause a noised
polynomial. Furthermore, it is known that already small perturbations of this polynomial may distort considerably the
location of the zeros and wrong frequencies may be detected.

Our approach uses ideas from linear programming and approximation theory to overcome this lack. If we have enough
samples and if there are at most moderate (sampling or computing) errors, the signal will be reconstructed. Otherwise, the
unnoised one (resp. its frequencies, amplitudes, bandwidth) will be approximated by our algorithm. Furthermore, possible
sample outliers can be detected and removed/corrected to improve the result.

We use the l1-norm for the real resp. another closely related norm for the complex case. Using these norms, we will see
that the calculated signal has some very useful properties to rate the quality of the samples and to detect outliers (besides
its reconstruction/approximation property).

The order of approximation (i.e. the numberm of recognized frequencies) depends sensitive on the samples, i.e. even low
noised samples may change the bandwidth. Some frequencies may be very close together or have amplitudes with small
moduli, which often indicate the presence of noised samples. Although these cause no problems for the calculations in the
subsequent described algorithm, it is desirable to detect noised samples as early as possible. Such a noising filter is the
phase 2 in our algorithm which often reduces the bandwidth and the size of the problem during the computations and can
significantly improve the ‘quality’ of the obtained signal.

In the context of compressive sensing, one is interested in to find a sparse representation of the signal with few active
frequencies. For this problem, it is known that in most cases an l1-solution is also the sparsest one [15], and thus noise
caused clustered frequencies are widely avoided by such a solution. Although we have here overdetermined instead of
underdetermined systems, our numerical tests hypothesized that the latter behaviour retains valid for the solutions which
we calculated by the algorithm we describe below.

It was e.g. already in the year 1964 in [16] noted that in the presence of outliers, wild points, the usage of the l1-norm,
appeared to be markedly superior among the other lp-norms, 1 < p ≤ ∞, at least for a subproblem (finding a best
approximation) of the problem we consider here. Especially, these l1-approximants have smaller variances than the least
squares approximants when the errors follow a Laplace distribution or any long tailed distribution.

The least squares principle bases on the assumption that the errors are normally distributed which is usually not the case
for given samples. The popularity of least squares methods is rather reasoned in the availability of good algorithms and a
well studied underlying theory than on the knowledge of the distribution of the samples.

If the kind of noising is known, pre-filtering the samples is of course useful. However, this is a theme of own interest and
we do not consider this aspect here.

We start the next section with some basics about Prony’s method which we use in the following. At first, we modify the
classical proceeding for the case that m is not known a priori. This leads to an overdetermined system of linear equations
which can be solved by using the methods of linear programming as described in Section 3. By ‘solving’ we mean that
we minimize the l1-norm of the residuals for the real case; for the complex case, this will be slightly weakened. During
the computations, m will be calculated and mostly the dimension of the problem can be significantly decreased. The
residuals indicate where there are possible sampling errors so that they can be detected and corrected or ignored for further
computations.
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