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a b s t r a c t

Based on a characteristic method, this work is concerned with a finite element approx-
imation to the time-dependent Navier–Stokes equations with nonlinear slip boundary
conditions. Since this slip boundary condition of friction type contains a subdifferential
property, its continuous variational problem is formulated as an inequality, which can turn
into an equality problem by using a powerful regularized method. Then a fully discrete
characteristic scheme under the stabilized lower order finite element pairs is proposed for
the equality problem. Optimal error estimates for velocity and pressure are derived under
the corresponding L2,H1-norms. Finally, a smooth problem test is reported to demonstrate
the theoretically predicted convergence order and the expected slip phenomena, and the
simulation of a bifurcated blood flow model is displayed to illustrate the efficiency of the
proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will consider the mathematical model of viscous incompressible fluid, which can be written as the
following time-dependent Navier–Stokes equations⎧⎪⎨⎪⎩

∂u
∂t

− ν∆u + (u · ∇)u + ∇p = f in Ω × J,
div u = 0 in Ω × J,
u(0) = u0 in Ω × {0},

(1.1)

where J = (0, T ] (0 < T < ∞) is a given time interval, Ω ⊂ R2 is a bounded convex domain with a Lipschitz continuous
boundary Γ = ∂Ω , u(x, t) and f (x, t) denote the flow velocity and the external force, p(x, t) is pressure, and ν > 0 is the
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kinematic viscosity. Moreover, the boundary conditions are presented as follows:{
u = 0 on ΓD,

un = 0, |στ | ≤ g, στuτ + g|uτ | = 0 on ΓS,
(1.2)

where Γ = Γ D ∪ Γ S . The adhesive Dirichlet boundary condition is imposed on ΓD, and for ΓS , a nonlinear slip and non-leak
boundary conditions are considered. Assume that both ΓS and ΓD are not empty and ΓD ∩ ΓS = ∅. Here and what follows,
the unit outward normal vector and the tangent vector to the boundary are denoted by n and τ, respectively. For a vector
field v on the boundary, v · n and v · τ are its normal and tangential components. Let vn ≡ v · n and vτ ≡ v − vnn. Denote
by στ(u) = ν ∂uτ

∂n , independent of p, the tangential component of stress vector defined on ΓS . The frictional function g , is
assumed to be continuous on Γ S and strictly positive on ΓS . This friction type of boundary conditions was first introduced
by Fujita in [1] and appeared in the modeling of blood flow in a vein of an arterial sclerosis patient and some other models.

For such boundary conditions (1.2), Fujita in [2] showed existence and uniqueness of a weak solution for the Stokes
problem. From a theoretical point, some well-posedness analyses for the Stokes problem with nonlinear slip boundary
conditions have been discussed during the past years [3–6]. In addition, numerical results for the steady Stokes and Navier–
Stokes problems with such boundary conditions can be found in [7–12]. However, to our knowledge, there has not been
much work on an analysis of finite element (FE) approximations to the unsteady problems with such boundary conditions.
Djoko in [13] considered a semi-discrete scheme in time for the unsteady Stokes variational inequality problem by means
of a regularized method, Kashiwabara in [14] investigated the weak solutions of the continuous variational inequality
problemgoverned by the non-stationaryNavier–Stokes equations, Li in [15] used the regularizedmethod to obtain existence,
uniqueness and regularity of global weak solutions to the two-dimensional time-dependent Navier–Stokes equations with
nonlinear slip boundary conditions, and also stabilized FE methods are employed to solve this problem in [16], where the
following convergence estimates with respect to a regularization parameter ε are established:{

∥u − uε
∥L∞(0,T ;L2) ≤ Cε

1
2 ,

∥u − uε
∥L2(0,T ;H1) + ∥p − pε

∥L2(0,T ;L2) ≤ Cε
1
2 ,

where (u, p) and (uε, pε) are the solutions of the Navier–Stokes type variational inequality problem and its regularized
problem, respectively, and the constant C > 0 is independent of ε.

Since the characteristic methods can effectively weaken a non-physical phenomenon caused by nonlinear term (u · ∇)u
[17,18], which via rewriting the governing equations (1.1) in terms of Lagrangian coordinates defined by the particle
trajectories associated with the problem under consideration [19]. The Lagrangian treatment can greatly reduce a time
truncation error in the Eulerianmethod [20], and the characteristicmethods have been shown topossess remarkable stability
properties [21,22]. Furthermore, it is well-known that a regularized method plays a key role in theoretical and numerical
analysis of a variational inequality problem, which turns the variational inequality into equations. In this work, with the
help of regularized technology, we combine the characteristic method with the pressure projection stabilized method to
solve the time-dependent Navier–Stokes problemwith nonlinear slip boundary conditions, and we derive the optimal error
estimates based on the following FE approximation:{

∥uε(tm) − uε
h(tm)∥H1 + ∥pε(tm) − pε

h(tm)∥L2 ≤ Ch,
∥uε(tm) − uε

h(tm)∥L2 ≤ Ch2.

The organization of this paper is given as follows. In the next section, we will introduce some function spaces, existence
of weak solutions of the discussed problem, the characteristic method and the corresponding regularized problem. In
Section 3, we will develop a first-order fully discrete scheme of the characteristic regularized continuous equality problem.
Our analysis shows that this fully discrete scheme is unconditionally stable provided that the characteristics are transported
by a divergence-free velocity field. Optimal error estimates for the characteristic stabilized method are derived in Section 4.
This work ends with a section of numerical examples. Slip and non-slip phenomena are shown that depend on the friction
function, the obtainedoptimal error estimates are consistentwith theoretical analysis, results of the blood flowmodel further
illustrate the feasibility of the proposed method.

2. Statement of the Navier–Stokes equations with nonlinear slip boundary conditions

2.1. Weak form of the problem

Let H1
0 (Ω) be the standard Sobolev space [23] equipped with the usual norm ∥ · ∥1. For function spaces corresponding to

velocity and pressure, we introduce closed subspaces of [H1(Ω)]2 or L2(Ω) as follows:

V = {v ∈ [H1(Ω)]2 : v|ΓD
= 0, vn|ΓS

= 0},Vo = {v ∈ V : div v = 0},Y = L2(Ω),
◦

V = [H1
0 (Ω)]2,

Q = L20(Ω) =

{
q ∈ L2(Ω),

∫
Ω

q dx = 0
}

, H = {v ∈ L2(Ω)2| div v = 0 in Ω and vn = 0 on ∂Ω}.
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