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a b s t r a c t

We study W 1,p Lagrange interpolation error estimates for general quadrilateral Qk finite
elements with k ≥ 2. For the most standard case of p = 2 it turns out that the constant
C involved in the error estimate can be bounded in terms of the minimal interior angle of
the quadrilateral. Moreover, the same holds for any p in the range 1 ≤ p < 3. On the other
hand, for 3 ≤ p we show that C also depends on the maximal interior angle. We provide
some counterexamples showing that our results are sharp.
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1. Introduction

This paper deals with error estimates in theW 1,p norm for the Qk Lagrange interpolation on a general convex quadrilat-
eral K ⊂ R2. Denoting the interpolant with Qk the standard error estimate is usually found in the form

∥u − Qku∥0,p,K + h |u − Qku|1,p,K ≤ Chk+1
|u|k+1,p,K , (1.1)

being h the diameter of K . Inequality (1.1) involves the Lp error estimate

∥u − Qku∥0,p,K ≤ Chk+1
|u|k+1,p,K , (1.2)

and the seminorm estimate

|u − Qku|1,p,K ≤ Chk
|u|k+1,p,K . (1.3)

A centralmatter of (1.1) concerns the dependence of C on basic geometric quantities of the underlying elementK . It is known
that the constant C in (1.2) remains uniformly bounded for arbitrary convex quadrilaterals (see Theorem 6.1). However this
statement is false for the constant C in (1.3) (see for instance the counterexamples in the last section). The primary goal of
this paper is to study the dependence of C in (1.3) on the interior angles of K . Although the role of the interior angles has
been related to C in many previous works, none of them, to the best of the authors knowledge, have given a result as plain
as the one offered in this paper. For instance, bounding the minimal and the maximal inner angle is considered a central
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matter in mesh generation algorithms since the early work by Ciarlet and Raviart [1], however no proof of sufficiency has
been given so far (at least for an arbitrary degree of interpolation).

In order to present our results let us first introduce the following classical definition that we write for both triangles and
quadrilaterals for further convenience.

Definition 1.1. Let K (resp. T ) be a convex quadrilateral (resp. a triangle). We say that K (resp. T ) satisfies the minimum
angle conditionwith constant ψm ∈ R, or shortlymac(ψm), if for any internal angle θ of K (resp. T ) 0 < ψm ≤ θ .

Our first result says that the constant in (1.3), for a fixed degree k and a fixed value of p with 1 ≤ p < 3, can be written as
C = C(ψm). As a consequence, the same can be stated about the constant in (1.1). This seems to be the most general result
available for quadrilaterals in the case k ≥ 2. In spite of the fact that much weaker geometrical conditions are known to be
sufficient for the case k = 1, we show, by means of a counterexample, that they fail for a higher degree interpolation. This
counterexample also warns that removing the minimal angle condition may indeed lead to a blowing-up constant in (1.3).

Themac is the most standard condition considered in textbooks for triangular finite elements. Actually, in that case, it is
equivalent to the so called regularity condition, i.e. equivalent to the existence of a constant σ such that

h/ρ ≤ σ , (1.4)

where ρ denotes the diameter of the maximum circle contained in T . On the other hand, the term anisotropic or narrow is
usually applied to elements that do not satisfy (1.4). Even when triangles can become narrow only if the minimal angle is
approaching zero a very different situation occurs on quadrilaterals. Indeed, in that case themac condition is less restrictive
than (1.4) since arbitrarily narrow elements are allowed with a positive uniform bound for the minimal angle (for example,
anisotropic rectangles always verify mac(π/2)). Anisotropic elements are important for instance in problems involving
singular layers and the first works dealing with them arise during the seventies showing that (1.4) can be replaced (for
triangles) by the weaker following condition.

Definition 1.2. Let K (resp. T ) be a convex quadrilateral (resp. triangle), we say that K (resp. T ) satisfies themaximum angle
conditionwith constant ψM ∈ R, or shortlyMAC(ψM), if for any internal angle θ of K (resp. T ) θ ≤ ψM < π .

Indeed, in [2,3] it is proved that the MAC is sufficient to have optimal order error estimates for Lagrange interpolation on
triangles. In the case of quadrilateral elements, (1.4) it is also a sufficient condition as it was shown by Jamet [4] for k = 1
and p = 2. This condition is less restrictive than that proposed in [1] where the authors require the existence of two positive
constants µ1, µ2 such that

h/s ≤ µ1 (1.5)

where s is the length of the shortest side of K , and

| cos(θ)| ≤ µ2 < 1 (1.6)

for each inner angle θ of K . Observe that under the regularity condition (1.4) the quadrilateral can degenerate into a triangle
(for instance if the shortest side tends to zero faster than their neighboring sides or if the maximum angle of the element
approaches π ), however this kind of quadrilateral cannot become too narrow. Condition (1.6) will play an important role in
the sequel and therefore we introduce the following alternative definition.

Definition 1.3. We say that a quadrilateral K satisfies the double angle condition with constants ψm, ψM , or shortly
DAC(ψm, ψM), if K verifies mac(ψm) and MAC(ψM) simultaneously, i.e., if all inner angles θ of K verify 0 < ψm ≤ θ ≤

ψM < π .

The DAC allows anisotropic quadrilaterals (such as narrow rectangles) as well as families of quadrilaterals that may
degenerate into triangles. To see that consider, for instance, a quadrilateralwith vertices (0, 0), (1, 0), (s, 1−s) and (0, 1−s)
and take 0 < s → 0.

For anisotropic quadrilaterals several papers have been written mainly in the isoparametric case with k = 1. In [5,6]
narrow quadrilaterals are studied and the authors require the two longest sides of the element to be opposite and almost
parallel, the constant C obtained by them depends on an angle which in some cases is the minimum angle of the element.
Anisotropic error estimates for some perturbations of rectangles have been derived in [7,8]. On the other hand, for k = 1,
more general and subtle conditions can be found in the literature. For k = 1 and p = 2, it is proved in [9] that the optimal
error estimate (1.3) can be obtained under the following weak condition.

Definition 1.4. Let K be a convex quadrilateral, and let d1 and d2 be the diagonals of K . We say that K satisfies the regular
decomposition propertywith constantsN ∈ R and 0 < ψM < π , or shortly RDP(N, ψM), if we can divide K into two triangles
along one of its diagonals, thatwill be called always d1, in such away that |d2|/|d1| ≤ N and both triangles have itsmaximum
angle bounded by ψM .

In Remarks 2.3–2.7 of [9] it is shown that the regular decomposition property RDP is certainly much weaker than those
considered in previous works (including [7,8,1,4–6]). We collect for further reference some elementary remarks.
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