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a b s t r a c t

In this article, we deal with a numerical wavelet collocation method (NWCM) using a
technique based on two-dimensional wavelets (TDWs) approximation proposed for the
fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric
media (EWDM). By implementing the Riemann–Liouville fractional derivative, TDWs
approximation and its operational matrix along with collocation method are utilized to
reduce FPDEs firstly into weakly singular fractional partial integro-differential equations
(FPIDEs) and then reduced weakly singular FPIDEs into system of algebraic equation. Using
Legendrewavelet approximation (LWA) and Chebyshevwavelet approximation (CWA), we
investigated the convergence analysis and error analysis of the proposed problem. Finally,
some examples are included for demonstrating the efficiency of the proposed method via
LWA and CWA respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wavelets are powerful tool which have been used in numerical techniques. Nowadays, wavelets theory is mostly used
in the field of applied science and engineering. Also, this allow the accurate representation of a variety of functions and
operators. Recently, wavelets have been found their location in many applications (see for instant [1–3]). Particularly,
wavelets are very successfully used in signal analysis [4]. It is proved that wavelets are powerful tool to explore new
direction in solving partial differential equations. Wavelets are localized functions [5], which are the basis for energy-
bounded functions [6] and in particular for L2(R). So, we implement orthogonal wavelet function in our proposed method.
The most frequently used orthogonal function are Legendre function [7], Chebyshev [8], Laguerre polynomials [9], etc. The
main notion of using an orthogonal basis is that the problem under consideration reduces to a system of linear or nonlinear
algebraic equations. This can be done by truncated series of orthogonal basis function for the solution of the problem using
the operational matrices (see for instant [10–12]). It is noted that wavelets operational matrix method not only simplifies
the problem but also speedup the computation. Therefore, in the last two decades different families of wavelets have been
widely used for solving FPDEs.

FPDEs have been one of the essential tools for various areas of applied Mathematics (see for instant [1–3]). FPDEs occur
naturally inmany fields of science and engineering. In recent years fractional derivatives have found numerous applications
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inmany fields of physics, finance and hydrology [13]. Also, fractional analysis has established somany applications in recent
studies in mechanics, and physical sciences phenomena in area like diffusion process [14], electrochemistry [15], arterial
sciences [16], the theory of ultra-slow processes [17], etc.

Fractional derivatives provide an excellent instrument for the description ofmemory and hereditary properties of various
materials and processes. A great deal of effort has been expanded over the last 15 years or so in attempting to find robust
and stable numerical and analytical methods for solving FPDEs of physical interest.

In this paper, we present a NWCM by using two wavelets to solving FPDEs for EWDM (see [18]) as follows:

(0Dαt u)(t, x)− λ1(0D
β
t u)(t, x)− λ2∇

2u(t, x) = f (t, x) (1)
with initial condition

u(t, x) = 0, ∀ t 6 0, u(t, x) ≠ 0, ∀ 0 < t < 1, 0 < x < 1
where the constant coefficients λ1 and λ2 depend on the frequency independent properties of medium and 1 ≤ β < α < 3.
Also, both the fractional derivatives present in Eq. (1) are defined in the Riemann–Liouville derivative sense. Eq. (1) can be
considered as a generalization of the so called Szabo equation [19], which describes lossy propagation of acoustical waves
in media with power law attenuation. Note that such a form allows simultaneous consideration of both regimes, before and
after the peak frequency and the transition between them.

The rest of the paper are as follows: In Section 2 introduced preliminaries of Riemann–Liouville derivative for FPDEs.
In Section 3, we discussed Legendre wavelet and their properties. In Section 4, we discussed Chebyshev wavelet and
their properties. In Section 5, we defined function approximation. In Section 6, we constructed operational matrices of
differentiation and integration. In Section 7, we discussed the method of solution of proposed problem. In Sections 8 and 9,
we discussed the convergence analysis and error analysis respectively. In Section 10, we demonstrate the accuracy of the
proposed method by several examples.

2. The fractional derivative in the Riemann–Liouville senses

In this section, we are recalling the necessaries of the calculus. The fractional calculus is a name for the theory of integrals
and derivatives of arbitrary order, which unifies and generalizes the notions of integer-order differentiation and n-fold
integration. So involving in our problem FPDEs solving by the Partial Riemann–Liouville fractional derivative with respect
to x defined as follows (see [20]):

(0Dαt u)(t, x) =
1

Γ 1 − {α}


∂

∂t

[α]+1  t

0

u(t, x)
(t − s){α}

ds ∀ t > 0, x > 0, α > 0

and

(0D
β
t u)(t, x) =

1
Γ 1 − {β}


∂

∂t

[β]+1  t

0

u(t, x)
(t − s){β}

ds ∀ t > 0, x > 0, β > 0

where, [α], [β] and {α}, {β} being the integral and fractional parts of α and β respectively. This reduced the FPDEs into
FPIDEs and this provide solvability of FPDEs in easy way.

3. Legendre wavelet and their properties

The well-known Legendre polynomials are defined on the interval [−1, 1] and can be determined with the aid of the
following recurrence formulae:

(m + 1)Lm(y) = (2m + 1)yLm(y)− mLm−1(y), m ∈ N, (2)
where,

L0(y) = 1, L1(y) = y.
In order to use Legendre polynomials on the interval [0, 1] we define the so-called shifted Legendre polynomials by
introducing the change of variable y = 2x − 1. Let the shifted Legendre polynomials Lm(2x − 1) be denoted by Pm(x).
Then Pm(x) can be obtained as follows:

(m + 1)Pm+1(x) = (2m + 1)(2x − 1)Pm(x)− mPm−1(x), m = 1, 2, 3, . . . ,
where, P0(x) = 1 and P1(x) = 2x − 1. The shifted Legendre polynomial Pm(x) has the following analytic form:

Pm(x) =


k=0

m(−1)m+k (m + k)!xk

(m − k)!(k!)2

and the orthogonality condition as follows: 1

0
Pm(x)Pn(x)dx =


1

2m + 1
ifm = n;

0 if m ≠ n.
(3)
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