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a b s t r a c t

In this paper, a numerical method is proposed for canonical polyadic (CP) decomposition
of small size tensors. The focus is primarily on decomposition of tensors that correspond
to small matrix multiplications. Here, rank of the tensors is equal to the smallest number
of scalar multiplications that are necessary to accomplish the matrix multiplication. The
proposedmethod is based on a constrained Levenberg–Marquardt optimization. Numerical
results indicate the rank and border ranks of tensors that correspond to multiplication of
matrices of the size 2× 3 and 3× 2, 3× 3 and 3× 2, 3× 3 and 3× 3, and 3× 4 and 4× 3.
The ranks are 11, 15, 23 and 29, respectively. In particular, a novel algorithm for computing
product of matrices of the sizes 3× 4 and 4× 3 using 29 multiplications is presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of determining the complexity of matrix multiplication became a well studied topic since the discovery
of the Strassen’s algorithm [1]. The Strassen’s algorithm allows multiplying 2 × 2 matrices using seven multiplications. A
consequence of this algorithm is that n × n matrices can be multiplied by performing of the order n2.81 operations. More
recent advances have brought the number of operations needed even closer to the n2 operations. The current record is
O(n2.373) operations due to Williams [2].

The problem of the matrix multiplication can be rephrased as a problem of decomposing a particular tensor according to
its rank [3]. In short, consider an order-3 tensor T of the size I × J × K having elements Tijk that admit a canonical polyadic
(CP) decomposition

Tijk =

R
r=1

AirBjrCkr (1)

where Air , Bjr , Ckr are elements of so-called factor matrices A, B, C, respectively. We shall use the symbolic notations of
Kolda [4], T = [[A, B, C]]. Then, the smallest R such that a CP decomposition (1) exists, is called the tensor rank. A border
rank R is defined as the smallest integer such that the given tensor T can be approximated to arbitrary precision by tensors
of rank R.

The lowest number of the scalar multiplications needed to compute the matrix product corresponds to the ranks of
certain tensors. It is equivalent to solution to the so-called Brent equation [5]. The focus of this paper is not on improving
the above asymptotic results of [2], but on numerical decomposition of tensors that correspond to multiplication of small
matrices and determining their rank [6]. Although the problem is quite old, only partial results are known so far.
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The matrix multiplication tensor for the 2 × 2 matrices is already completely clear [7]. It has rank 7 and border rank 7.
For the 3×3 case, an algorithm using 23 scalar multiplications was found by Laderman [8]. It means that the rank is at most
23. For multiplying two 4 × 4 matrices, one can use twice the Strassen’s algorithm, and therefore the rank is at most 49.
Multiplication of 5× 5 matrices was studied by Makarov [9] with the result of 100 multiplications (rank 100).

In this paper we present a numerical decomposition of the matrix multiplication tensors. For now, we are not able to
improve the known results of Strassen, Laderman and Makarov, instead we show a method of the decomposition with
these ranks and numerical results indicating that further improvements are probably not possible. Moreover, the numerical
methods allow to guess the border rank of the tensors. As a new result, we have derived a novel algorithm for multiplying
two matrices of the size 3× 4 and 4× 3 through 29 multiplications.

Traditional numerical tensor decomposition methods include the alternating least squares method (ALS) [10], improved
ALS through the enhanced line search (ELS) [11], damped Gauss–Newton method, also known as Levenberg–Marquardt
(LM) method [12], and different nonlinear optimization methods, e.g. [13]. For decomposition of the multiplication tensors
we have developed a special variant of the constrained LM method. Once an exact representation is found, we propose a
method of seeking another representation such that the factor matrices only contain nulls, ones and minus ones.

The rest of the paper is organized as follows. The tensors of the matrix multiplication are introduced in Section 2. The
numerical method of their decomposition is presented in Section 3. Section 4 presents numerical results and Section 5
concludes the paper.

2. Tensor of matrix multiplication

Consider two matrices E and F of the sizes P × Q and Q × S, respectively, and their matrix product G = EF of the size
P× S. The operation of the matrix multiplication can be represented by a tensor TPQS of the size PQ ×QS× PS which is filled
with nulls and ones only, such that

vec(G) = TPQS ×1 vec(ET )T ×2 vec(FT )T (2)

regardless of the elements values of E and F. Here,×i denotes a tensor–matrix multiplication along the dimension i, and the
operator ‘‘vec’’ stacks all elements of a matrix or tensor in one long column vector.

Note that the number of ones in the tensor TPQS is PQS; it is the number of scalar multiplications needed for evaluating
the matrix product by a conventional matrix multiplication algorithm.

The tensor TPQS has the elements

(TPQS)αβγ = δinδjkδℓm (3)

where α = (i− 1)Q + j; β = (k− 1)S + ℓ; γ = (m− 1)P + n; i, n = 1, . . . , P; j, k = 1, . . . ,Q ; ℓ,m = 1, . . . , S.
For example,

T222 =

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

 . (4)

This tensor has the size 4× 4× 4, and the vertical lines separate the four frontal slices of the tensor.
A canonical polyadic decomposition of the tensor TPQS is a representation of the tensor as in (1), TPQS = [[A, B, C]]. For

example, a CP decomposition of the tensor T222 in (4) corresponding to the Strassen algorithm [2] is T222 = [[A, B, C]]with

A =

1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1



B =

1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1



C =

1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0

 .

The multiplication tensors have the following properties:

1. Ranks of these tensors exceed the tensors’ dimensions.
2. The CP decompositions are not unique.
3. The border ranks of the tensors might be strictly lower than their true ranks.
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