Accepted Manuscript

A modified shift-splitting method for nonsymmetric saddle point problems

Zhuo-Hong Huang, Hong Su

PII: \quad S0377-0427(16)30574-X
DOI: http://dx.doi.org/10.1016/j.cam.2016.11.032
Reference: CAM 10905

To appear in: Journal of Computational and Applied Mathematics

Received date: 22 March 2015
Revised date: 17 October 2016

Please cite this article as: Z.-H. Huang, H. Su, A modified shift-splitting method for nonsymmetric saddle point problems, Journal of Computational and Applied Mathematics (2016), http://dx.doi.org/10.1016/j.cam.2016.11.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Manuscript

A modified Shift-splitting method for nonsymmetric saddle point problems *

Zhuo-Hong Huang \dagger Hong Su
School of Mathematics and Statistics
Chongqing University of Technology,
Chongqing, 400054, China, P. R. China

Abstract

To solve large sparse saddle point problems, based on modified shift-splitting (denoted by MSSP) iteration technique, a MSSP preconditioner is proposed. We theoretically verify the MSSP iteration method unconditionally converges to the unique solution of the saddle point problems, compute the spectral radius of the MSSP iteration matrix and estimate the sharp bounds of the eigenvalues of the corresponding iteration matrix. Numerical experiments show that the MSSP iteration method is effective and accurate. Key words: modified shift-splitting; Krylov subspace methods; spectral property; preconditioning technique; convergence rate

1 Introduction

Consider a given, nonsymmetric, large sparse saddle point system $A x=$ b in the following form

$$
A x=\left(\begin{array}{cc}
B & E \tag{1.1}\\
-E^{T} & 0
\end{array}\right)\binom{u}{v}=\binom{f}{g},
$$

where $B \in \mathbb{R}^{n \times n}$ is symmetric positive definite, $E \in \mathbb{R}^{n \times m}(n \geq m)$ has full column rank, $u, f \in \mathbb{R}^{n}$ and $v, g \in \mathbb{R}^{m}$. Here, E^{T} denotes the transpose of E.

[^0]
https://daneshyari.com/en/article/5776350

Download Persian Version:
https://daneshyari.com/article/5776350

Daneshyari.com

[^0]: *This research is supported by Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjA1432, cstc2013jcyjA0486), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1500941, KJ1500908).
 ${ }^{\dagger}$ E-mail: zhuohonghuang@cqut.edu.cn.

