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a b s t r a c t

The paper is concerned with the time step condition of the commonly-used semi-implicit
Crank–Nicolson finite difference schemes for a coupled nonlinear Schrödinger system in
three dimensional space. We present the optimal L2 error estimate without any restriction
on time step, while all previous works require certain time step conditions. Our approach
is based on a rigorous analysis in both real and imaginary parts of the energy estimate
(inequality) of the error function. Numerical examples for both two-dimensional and
three-dimensional models are investigated and numerical results illustrate our theoretical
analysis.
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1. Introduction

In this paper, we consider the initial–boundary value problem of a coupled nonlinear Schrödinger (CNLS) system in three
dimensional space:

iut + 1u + (|u|2 + β|v|
2)u = 0, x ∈ Ω, 0 < t ≤ T , (1.1)

ivt + 1v + (|v|
2
+ β|u|2)v = 0, x ∈ Ω, 0 < t ≤ T , (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.3)
u|x∈∂Ω = 0, v|x∈∂Ω = 0, (1.4)

where i =
√

−1, β is a given constant, Ω = [0, L1] × [0, L2] × [0, L3] ⊂ R3. u(x, t) and v(x, t) are complex unknown
functions defined in Ω × [0, T ]. When β = 1 and u0(x) = v0(x), the system reduces to a single equation

iut + 1u + 2|u|2u = 0, x ∈ Ω, 0 < t ≤ T , (1.5)
u(x, 0) = u0(x), x ∈ Ω, (1.6)
u|x∈∂Ω = 0. (1.7)

The Schrödinger equations may describe many physical phenomena in optics, mechanics, and plasma physics. Here, we
are particularly interested in coupled nonlinear Schödinger system due to its important applications and physical signifi-
cance [1–3]. We refer the readers to [4–6] for an overview of various properties of the system, such as existence, uniqueness
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and stability results of solutions. Numerical methods and analysis for solving such equations have been investigated exten-
sively, e.g., see [7–14] for finite difference methods, [15,16] for finite element methods and [17–22] for others. Usually, fully
implicit schemes are unconditionally stable. However, at each time step, one has to solve a systemof nonlinear equations. An
explicit scheme is much easy for implementation. But it suffers the severely restricted time stepsize from the convergence
requirement. A popular and widely-used approach is a semi-implicit scheme, such as linearized Crank–Nicolson scheme.
At each time step, the scheme only requires the solution of a linear system. The time step restrictive condition is always a
key issue for these schemes. For the Schrödinger equations, several modified explicit schemes were studied in [23,24], in
which an extra dissipative termwas added in the scheme to improve their stability condition. Analysis for implicitly nonlin-
ear schemes can be found in [25,26]. Chang et al. [27] presented a systematic review and numerical comparison of several
commonly-used finite difference schemes for the generalized nonlinear Schrödinger equations. Based on their numerical
results and comparison, the linearized Crank–Nicolson scheme showed the best performance. Numerical analysis for the
linearized Crank–Nicolson schemewas studied by several authors. Wang et al. [28] analyzed this linearized Crank–Nicolson
scheme for the CNLS equations in one-dimensional space andprovided optimal L2 error estimate under the time-step restric-
tive condition τ = o(h1/4), where τ and h are the stepsizes in the temporal direction and the spatial direction, respectively.
Applying their approach to the equations in three-dimensional spacewill require a stronger time-step condition τ = o(h3/4).
A similar work for the Kuramoto–Tsuzuki equation can be found in [29] with the same time-step condition. The approach is
based on the analysis of the imaginary part of the classical energy estimate (inequality) since the real part is too weak. Such
an approach was used also for Galerkin finite element methods, e.g., see [15], where optimal error estimates were obtained
under some similar time-step conditions. More recently, Bao and Cai [30] studied a class of Schrödinger equations with an
extra ϵ-perturbed term, which reduces to the classical nonlinear Schrödinger equations when ϵ = 0. An optimal L2 error
estimate of a linearized Leap-frog scheme for the equations in one-dimensional space was obtained when τ , h ≤ s0 for
certain small positive constant s0. As they pointed out, their analysis can be extended to the equations in three-dimensional
space under the time-step condition τ = o(h) and the results are still valid for the classical Schrödinger equations (ϵ = 0).
However, in the analysis the numerical solution in L∞ norm was bounded, in terms of the classical inverse inequality

∥eh∥L∞ ≤ Cγd(h)∥eh∥H1

for the error function eh, where d is the dimension and γ2 = | ln h|, γ3 = h−1/2. TheH1 error bound ∥eh∥H1 was estimated by
using an H2-estimate method, which requires higher regularity of solution. Also the H2-estimate method may not be appli-
cable directly to Galerkin finite element methods. To obtain an L2 error estimate directly by following the classical energy
estimate method [28,30], one has to use the inverse inequality

∥eh∥L∞ ≤ Ch−d/2
∥eh∥L2

to bound the numerical solution in L∞ norm, which results in a stronger time step restriction. In practical computations,
time-step restrictive conditions may result in the use of an unnecessarily small time step and extremely time-consuming.
Also the problem becomes more serious when a non-uniform mesh is used.

The paper focuses on unconditionally optimal error analysis of two popular linearized semi-implicit Crank–Nicolson
finite difference schemes for the CNLS system in three dimensional space. In these two schemes, the nonlinear term is treated
by a linearized semi-implicit approximation and an explicit approximation, respectively. The optimal L2 error estimate is
obtained without any time-step condition, i.e., 0 < hr ≤ Lr and 0 < τ ≤ T , for the first scheme and with the condition
h < s0 for some small constant s0 > 0 for the second scheme. The approach is based on a rigorous analysis in both real and
imaginary parts of the energy estimate (inequality) and a simple inequality, with which the error function at a given time
level is bounded, in termsof its average at two consecutive time levels,when τ ≥ h. Numerical results presented in this paper
confirm that the first scheme is unconditionally convergent. More important is that our approach can be easily extended
to Leap-frog finite difference scheme and Galerkin finite element methods to obtain optimal error estimates without any
time-step conditions, while those previous works always require certain time-step restrictions.

The paper is organized as follows. In Section 2, we present two linearized Crank–Nicolson schemes and our main results.
By introducing some notations and lemmas, we prove optimal error estimates of the finite difference schemes in Section 3.
Numerical results are given in Section 4. Two artificial examples in 2D and 3D spaces are presented, respectively, to show
that the linearized Crank–Nicolson scheme provides second-order accuracy in both time and spatial directions without any
time step conditions. An example for the interaction of two solitons is also presented.

2. Linearized Crank–Nicolson schemes and main results

In this section, we present a linearized Crank–Nicolson scheme. Let Ωh = {(x1,j1 , x2,j2 , x3,j3)|x1,j1 = j1h1, x2,j2 =

j2h2, x3,j3 = j3h3; 0 ≤ jr ≤ Mr , r = 1, 2, 3} be a partition of Ω with the mesh size hr = Lr/Mr , and α1 ≤
hi
hj

≤ α2,
1 ≤ i, j ≤ 3, for some positive constants α1 and α2. We denote h = max{h1, h2, h3}. Let Ωτ = {tn|tn = nτ ; 0 ≤ n ≤ N} be a
uniform partition of [0, T ] with the time step τ = T/N , Ωhτ = Ωh × Ωτ and denote

Jh = {(j1, j2, j3)|0 ≤ jr ≤ Mr; r = 1, 2, 3}
J ′h = {(j1, j2, j3)|1 ≤ jr ≤ Mr − 1; r = 1, 2, 3}
J ′′h = {(j1, j2, j3)|0 ≤ jr ≤ Mr − 1; r = 1, 2, 3}.
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