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a b s t r a c t

From the view point of probability, this study presents a theoretical framework to show
the convergence of the RBFs method for valuing options. It will be proved to be equivalent
to a multinomial tree approach, in which the underlying variable can move from its initial
value to an infinity of possible values of the next time step. Specially, the probability of a
move in a short period time follows the normal distribution when using the Gaussian basis
kernel, it is a precise simulation of the behavior of the underlying variable, which provides
amore reasonable explanation of high-accuracy of the RBFsmethod. This helps open a new
area of research in developing the expected numerical method for derivative securities (in
which the underlying asset follows other stochastic process) by using corresponding radial
basis kernel. The paper also illustrates the approach by using it to value stock options and
its Greek letters.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the early 1970s, F. Black, M. Scholes, and R. Merton made a major breakthrough in the pricing of stock options, which
involved the development of what has become known as the Black–Scholes model [1,2]. In a risk-neutral word, Black and
Scholes presented an analytical formula for evaluating European options. Unfortunately, no exact analytic formula for the
value of anAmerican put option on anon-dividend-paying stock. Asweknow that theAmerican option pricing can be treated
as a free boundary problem [3]. Until recently, a lot of numerical procedures and analytic approximations for calculating
American option values have been developed. For example, the binomial tree method (BTM) by Cox et al. [4]; the finite
difference approach by Brennan and Schwartz [5]; the projected successful over-relaxation approach by Wilmott et al. [6];
the front-fixing finite difference method by Wu and Kwok [7]; the Monte Carlo simulation by Grant et al. [8]; the integral
equationmethod byHuang et al. [9]; the adaptivemeshmodel by Figlewski et al. [10]; the penaltymethod by Forsyth, Khaliq
and Nielsen et al. [11–13]; the mesh free method by Fasshauer et al. [14]; the iterative method by Salmi et al. [15], etc. A
comparison of some numerical methods can be found in Broadie and Detemple’s review paper [16].

Lately, a radial basis functions (RBFs) method for solving options pricing model is proposed by Hon and Mao [17]. This
method involves two steps, first the approximation of spatial derivatives with RBFs interpolation converts Black–Scholes
equation into a system of ordinary differential equations (ODEs), then, integrate the resulting system of ODEs in time. The
method is ameshless computational algorithmwhich does not require the generation of a grid as in finite differencemethod
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or a mesh as in the finite element method. This makes the RBFs method particularly efficient in solving such kind of free
boundary problem. Moreover, it can be used to calculate the Greek letters of the option directly, since the radial kernels
are infinitely continuously differentiable. Besides, RBFs method offers a highly accurate approximation to the solution in
numerical experiments.

There are two alternative ways of using the RBFs for the numerical solution of the time-dependent partial differential
equations (PDEs). The first, as shown in [17], transforms the PDEs into a system of ODE of the unknown coefficients, then
the solution can be valued by solving the unknown coefficients. The second transforms the PDEs into a system of ODE of the
solution, and the solution can be directly obtained by using any time integration scheme. In this study, the second approach
is taken. In this way, the RBFs method will be confirmed to be a multinomial tree, in which the stock price moves from its
initial value to all values of the next time step. Specially, the probability of a move in a short period time follows the normal
distribution when using the Gaussian basis kernel, it is a precise approximation to the process followed by the underlying
variable. This offers a more reasonable explanation of high-accuracy of the method.

The layout of the paper is as follows. Section 2 describes the RBFs collocation method for the options pricing model.
Section 3 shows the consistency of the RBFs method and the corresponding PDEs, illustrates its relation to tree approaches
and discusses its probability distribution of a short time step. Section 4 applies the method to value options and its Greek
letters. The last section is dedicated to a brief conclusion.

2. RBFs method for solving Black–Scholes equation

2.1. Black–Scholes model

As is common in the risk neutral world, the underlying stock price S is assumed to follow the lognormal diffusion process
(which is also famous as geometric Brownian motion):

dS = rSdt + σ SdW

where dW is a Winner process and r and σ represent the risk-free interest rate and volatility, respectively. It is well known
that the value at time t of the option on the stock price solves the following Black–Scholes PDE:
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where v(S, t) is the option value at time t and stock price S. The terminal condition is given by the maximum payoffs
valuation

v(S, T ) =


max{K − S, 0}, for put
max{S − K , 0}, for call (2.2)

where T is terminal time and K is the strike price of the option. A simple transformation S = exp(x) changes Eq. (2.1) and
the terminal boundary conditions (2.2) into
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and

u(x, T ) =


max{K − exp(x), 0}, for put
max{exp(x) − K , 0}, for call. (2.4)

2.2. RBFs interpolation

RBFs interpolation, one of meshfree approximation methods, is a very useful and convenient tool for approximation
problems. It has been employed for solving PDEs intensively, for example [18–22] solve PDEs by means of the collocation
with RBFs. The advantages of the approach are high-order accurate, flexible with respect to the geometry, computationally
efficient, and easy to implement. The RBFsmethod performswell inmany calculations including the numerical experiments
that are reported by Franke [23]. For more information about the meshless method, we refer readers to the book [24] and
the reference therein. An RBF depends only on the distance to a center point xj and is of the form φ(∥x − xj∥). The RBF may
also have a parameter c , in which case φ(r) is replaced with φ(r, c). Some of the most popular RBFs are listed in Table 1. To
be specific, given data {xj, f (xj)}Mj=1, where xj are some nodes in the domain of the problems and M is the number of nodes.
The RBFs interpolant of a function f is defined

f (x) ∼ f ∗(x) =


λjφ(∥x − xj∥), x ∈ Rd (2.5)
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