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a b s t r a c t

A hypersingular integral can be regularized by replacing the whole integrand by a forward
difference quotient of 2nd order. If the density function is nearly singular, then Gauss
quadrature formulas associated with a suitable modification of the Chebyshev weight
function allow to obtain great precision with few nodes. However, in most cases, the
own nature of this procedure makes unpredictable the location of quadrature nodes. This
paper presents a simple but effective technique whose aim is to mitigate instability when
some node lies too close to the pole. Some numerical examples are shown to evaluate the
performance of the proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A hypersingular integral over the interval (−1, 1) is defined as the following limit (if exists).
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where x ∈ (−1, 1) is the Hadamard-type singularity of order two.
To ensure the existence of (1), it suffices that F ′

∈ Lipα , 0 < α ≤ 1, although this assumption can be weakened [1].
The calculation of singular boundary integrals is a problem that arises from the application of the boundary element

method (BEM), and is related to the evaluation of (1). Indeed, a non-trivial discretization process must be carried out to
transform a boundary integral, defined on a two-dimensional region, into one of type (1) (cf. [2,3]). On the role played by
these integrals in elasticity, mechanics, etc., we refer the reader to [4,5], and references therein.

The following approximation formula is equivalent to (1) (cf. [6]).
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Note that both (1) and (2) are approximation formulas depending on a parameter ε. They have a theoretical value but
are not appropriate for numerical calculation. One fact is that a great variety of methods to evaluate integrals with strong
singularities are currently known, most of which have been published after the sixth decade of the 20th century (cf. [5,7,8]).

∗ Corresponding author.
E-mail address: jillan@uvigo.es (J. Illán-González).

http://dx.doi.org/10.1016/j.cam.2017.01.009
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.01.009
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.01.009&domain=pdf
mailto:jillan@uvigo.es
http://dx.doi.org/10.1016/j.cam.2017.01.009


J. Illán-González, J.M. Rebollido-Lorenzo / Journal of Computational and Applied Mathematics 319 (2017) 210–219 211

When ε is small, the integrals on the right side of (2) are nearly hypersingular, an issue also treated by several authors
due to the important role they play in the applications of the BEM (cf. [9,10]).

Our approach ismainly based on replacing the integrand of the integral defined in (1) by the following forward difference
quotient.

E(x, t) =
F(t) − F(x) − F ′(x)(t − x)

(t − x)2
. (3)

Paget [11] seems to be one of the first in using (3) to remove the singularity of (1). Nevertheless, when using finite
precision arithmetic and x ≈ t , then E(x, t) is unstable, even when F ′′(x) exists.

Other than (3), there are diverse regularization techniques that can be applied to (1). Following the same approach as
that indicated by (3), if the order of the Hadamard-type singularity ism > 2, then onemay use the Taylor polynomial of F(t)
with degreem− 1, and centered at t = x (cf. [12]). However, a more effective variant seems to be the use of the polynomial
P(ρ) that interpolates the non-singular part of the integral at a uniform mesh of points, and ρ is the distance between
the singularity and the integration variable (cf. [2,3]). According to the results reported in [2,3], a maximum accuracy of 8
decimal digits can be achieved when using a sixth-order Gauss quadrature formula.

Regardless of the robustness shown by the method used in [2], the quality of the results should be further enhanced
using the barycentric formulation based on n-point sets with an asymptotic density proportional to the Chebyshev weight
function of the first kind as n → ∞. A well known fact is that polynomial interpolation based on equidistant points is
ill-conditioned [13].

All the above mentioned methods assume that F(t) is regular, and focus on removing the polar singularity. Instead, we
are interested in evaluating (1) when F behaves poorly, a problemwhose solution is connected with the numerical stability
of (3). Then, our starting point is to assume that F(t) = g(t)H(t), where H represents the component of F that is related to
numerical instability. In short, H is nearly-singular and g is smooth.

In a previous paper [14] we used Gauss quadrature formulas associated with a suitable modification of the Chebyshev
weight function to evaluate the integral of the parametric function (3). The calculation of the corresponding quadrature
weights and nodes relies on the existing relation between the modified moments and the coefficients of the Chebyshev
series expansion of H(t)

√
1 − t2. As a result, the nodes are not known in advance, since they depend on the function H(t)

we have selected. The only information available a priori is that the asymptotical distribution of nodes is 1/(π
√
1 − t2) [15].

This may cause that some node is located very close to the parameter x, with the consequent loss of digits (cf. [5,16,17]).
In line with previous comments, the purpose of this work is to show how the forward difference quotient (3) can be

integrated efficiently regardless of the location of quadrature nodes and singular points. For this we propose a new type of
regularization of the integral (1) which consists in conveniently introducing an additional parameter within (3). All of which
is organized in the paper as follows.

As for the problem of calculating the parameters of the quadrature formula, we describe in Section 2 a fairly general
method that improves the results obtained in [14]. This section also addresses some aspects of Gauss quadrature formulas
associated with a weight function partially modified by a rational function, a topic suggested by W. Gautschi in 2004. In
Section 3 we describe the ε-regularization that we apply when the distance between nodal and collocation points is very
small. Some examples are given in Section 4 to show the performance of our method. Finally, Section 5 contains some
remarks as conclusion.

2. Preliminaries

Let us putWπ (t) = W (t)/π , whereW (t) = 1/
√
1 − t2.

Let f be a real function defined on [−1, 1]. If f is bounded, then the uniform norm of f is ∥f ∥ = sup{|f (t)|; t ∈ [−1, 1]}.

Let ∥f ∥p,W =

 1
−1 |f (x)|pW (x)dx

1/p
, where p ≥ 1. Let Lp,W denote the vector space of measurable functions f such that

∥f ∥p,W < ∞.
The symbol Tn stands for the nth orthogonal polynomial associated with W , defined as Tn(x) = cos(nθ), where

x = cos(θ).

2.1. Notes on Chebyshev series

Let


′∞

j=0 cjTj(x) be the Chebyshev series expansion of f ∈ L2,W , where the prime indicates that the first term in the sum
is halved. Moreover, the coefficients cj are given by (cf. [18, section 5.2])

cj = 2
 1

−1
Tj(t)f (t)Wπ (t)dt. (4)

The following lemma collects three different results which link the speed of convergence of Sn(f ) (the nth partial sum of the
Chebyshev series expansion of f ) with the smoothness of f (cf. [18, Theorems 5.2, 5.14, 5.16]).
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