
Journal of Computational and Applied Mathematics ( ) –

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Fast numerical valuation of options with jump under
Merton’s model✩

Wansheng Wang ∗, Yingzi Chen
School of Mathematics and Statistics, Changsha University of Science & Technology, 410114, Hunan, China

a r t i c l e i n f o

Article history:
Received 15 July 2016
Received in revised form 22 November
2016

MSC:
65M06
65M55
65L60
91B25
91G60
65J10

Keywords:
European option pricing
American option pricing
Merton’s jump–diffusion model
Finite difference methods
Discontinuous Galerkin finite element
methods

Multigrid methods

a b s t r a c t

In this paper, we consider discontinuous Galerkin (DG) finite element together with finite
difference (FD) scheme for solving Merton’s jump–diffusion model, which is given by a
partial integro-differential equations (PIDEs). Spatial differential operators are discretized
using FD on a uniform grid, and time stepping is performed using the DG finite element
method. The treatment of the integral term associated with jumps in models is more chal-
lenging. The discretization of this integral termwill lead to fullmatrices for the non-locality
of the integral operator. To fast solve this model, multigrid method is used for solving such
linear algebraical system. Numerical comparison of multigrid method and GMRES method
shows thatmultigridmethod is superior to andmore effective thanGMRESmethod in solv-
ing the dense algebraic systems resulting from the FD approximations of the PIDEs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the modern financial theory’s biggest successes in terms of both approach and applicability has been the
Black–Scholes option pricing model developed by Fisher Black and Myron Scholes in 1973 [1] and previously by Robert
Merton [2]. The celebrated Black–Scholes model is based on assumption that the price of the underlying asset behaves
like a geometric Brownian motion with a drift and a constant volatility which cannot explain the market prices of options
with various strike prices and maturities. To explain these behavior, a number of alternative models have appeared in the
financial literatures, for example, nonlinear models [3–6] and jump-diffusive models [7–9], which are given by a partial
integro-differential equation (PIDE). However, these models are more difficult to handle numerically in contrast to the cele-
brated Black–Scholesmodel. If we use an implicit method for the time discretization, we should solve a nonlinear system for
nonlinear models, and a non-symmetric dense system for jump-diffusivemodels. We have proposed two classes of splitting
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methods for solving nonlinear option pricing problems [10,11]. In this study, it was aimed to provide an efficient method
for numerically solving jump–diffusion models, especially, the Merton’s jump–diffusion model, which will lead to a dense
system due to the non-locality of the integral operator.

There has been much research on pricing options under jump models using finite difference (FD) methods, which is the
most common way to discretize the differential operators in the option pricing context (see, for example, [12,13]). In 1997,
Zhang [14] proposed an implicit–explicit time integral method that treats the integral term explicitly and the differential
terms implicitly for American options with Merton’s model. This method is a first-order accurate method and has a stabil-
ity restriction for the time stepsize. Tavella and Randall in [12] considered using a fully implicit time stepping method to
price European options and a stationary iterative method to solve the resulting dense problems with a full matrix. Andersen
and Andreasen proposed an unconditionally stable, second-order accurate alternating direction implicit (ADI) type operator
splittingmethodwith two fractional steps for European options in [15]. For American options, in [16] d’Halluin, Forsyth, and
Labahn used a penalty method and the Crank–Nicolson method with adaptive time steps, and an approximate semismooth
Newton method for the resulting nonlinear nonsmooth problems. Briani, La Chioma, and Natalini in [17] proposed a fully
explicit time stepping method for European options which leads to a more severe stability restriction. In 2005, on a nonuni-
form spatial grid, d’Halluin, Forsyth, and Vetzal [18] developed a method in which to use the fast Fourier transform (FFT) for
evaluating the integral term on a uniform grid they perform interpolations back and forth on nonuniform and uniform grids
for European options under Merton’s and Kou’s model; Almendral and Oosterlee [19] used the BDF2 method for time dis-
cretization, FFT for the integrations, and the iterative method proposed in [12] for linear systems; Cont and Voltchkova [20]
proposed an implicit–explicit time integral method that treats the integral term explicitly and the differential terms im-
plicitly for pricing European options in Exponential Lévy models. Toivanen [21] developed a numerical method for pricing
European and American options under Kou’s jump–diffusion model by using FD on nonuniform grid for discretizing spa-
tial differential operators, the implicit Rannacher scheme for the time stepping, and, a stationary iteration for the resulting
dense linear systems. Recently, Salmi and Toivanen in [22] proposed an iterativemethod for pricing American options under
jump–diffusion models.

One of the greatest challenges for numerically solving jump–diffusion models is how to reduce the computation costs.
The above research suggests that there are three main time discretization approaches, the implicit–explicit scheme that
treats the integral term explicitly and the differential terms implicitly which will lead to a stability restriction for the time
stepsize [14,20], the fully explicit scheme leading to a more severe stability restriction [17], and, the fully implicit scheme
which will produce dense systems with full matrices [12,16,19,21,22]. Reducing the computation costs for jump–diffusion
models is harder than doing it for the original Black–Scholes model when a fully implicit scheme is used. Some methods
have already been designed to overcome this difficulty, such as ADI [15], FFT [18,19], and, iterativemethods [12,16,19,21,22].
It is known that multigrid method is optimal iterative procedure, which has been widely used for PDEs (see e.g., [23,24]).
In this paper, we introduce a multigrid method on each time level to solve linear algebraic systems resulting from the FD
approximations of the PIDEs.

The rest of the paper is organized as follows: for the sake of completeness, in Section 2, we discuss the Merton’s model
and the corresponding option pricing problems. In Section 3, we consider the FD spatial discretization and present some
basic theoretical properties on the matrices resulting from this discretization. To exploit the time analyticity of the solution
for t > 0 and to cope with the loss of this analyticity at t = 0 [25], the time discretization is performed using the DG time
stepping scheme. This will be discussed in Section 4. In Section 5, we present our multigrid methods. Finally, in Section 6,
numerical comparison of multigrid method and GMRESmethod, which has been used to solve the resulting linear problems
in [25,26], suggests that multigrid method is superior to and more effective than GMRES in solving the dense algebraic
systems resulting from the FD approximations of the PIDEs.

2. Merton’s model and option pricing problems

Let V (t, S) be the value of a European contract that depends on the time t and underlying asset price S, which is given
by a process of the form

dS
S

= νdt + σdz + (η − 1)dq, (2.1)

where ν is the drift rate, σ is the volatility of the Brownian part of the process, η − 1 is an impulse function giving a jump
from S to Sη, and dq is a Poisson process and assumed to be independent of the Wiener process dz. Here, dq = 0 with
probability 1 − λdt , dq = 1 with probability λdt , where λ is the Poisson arrival intensity.

Under the above assumptions it is well known (Merton, 1976, [7]) that V (t, S) satisfies a final value problem defined by
the following PIDE:

∂V
∂t

+
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σ 2S2

∂2V
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+ (r − λκ)S
∂V
∂S

− (r + λ)V + λI(V (t, S)) = 0, (2.2)

where r is the risk-free interest rate, κ denotes the average relative jump size, E(η − 1), and I(V (t, S)) denotes the integral

I(V (t, S)) =


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0
V (t, Sη)ρ(η)dη.
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