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Camino de Vera s/n, 46022 València, Spain
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Abstract

A general family of iterative methods including a free parameter is derived and proved to be convergent for computing
matrix sign function under some restrictions on the parameter. Several special cases including global convergence behav-
ior are dealt with. It is analytically shown that they are asymptotically stable. A variety of numerical experiments for
matrices with different sizes is considered to show the effectiveness of the proposed members of the family.
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1. Motivation

It is known that the function of sign in the scalar case is defined for any z ∈ C not on the imaginary axis by

sign(z) =
{

1, Re(z) > 0,
−1, Re(z) < 0.

An extension of this function for the matrix case was given firstly by Roberts in [18], who introduced the matrix sign
function as a tool for model reduction and for solving algebraic Riccati equations.

The problem of computing a function of a matrix, named by f(A), is of growing significance, though as yet numerical
methods are developed for this purpose. In between, the matrix sign function is undoubtedly of crystal clear importance
in the theory and application of matrix functions (e.g., one may refer to [3, 6, 20]). The matrix sign function has basic
theoretical and algorithmic relations with the matrix square root, the polar decomposition and with the matrix pth roots
(see for more [10, chapter 5]). For example, a large class of iterations for the matrix square root can be obtained from
corresponding iterations for the matrix sign function, and due to this discussing and designing new iterative schemes for
finding matrix sign function is requisite.

The matrix sign function is a valuable tool for the numerical solution of Sylvester and Lyapunov matrix equations [1].
A generalization of the Newton iteration for the matrix sign function to the solution of the generalized algebraic Bernoulli
equations was presented in [2]. This matrix function is also used in [17] as a simple and direct method to derive some
fundamental results in the theory of surface waves in anisotropic materials. For other applications of matrix sign function,
we refer the reader to [16, 23]. Due to the applicability of the matrix sign function, stable iterative schemes have become
some viable choices for approximating this function.

Here we suppose that matrix A ∈ Cn×n has no eigenvalues on the imaginary axis. To define this matrix function
formally, let A = PJP−1 be the Jordan canonical form arranged so that J = diag(J1, J2), where the eigenvalues of
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