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a b s t r a c t

In this paper, the implicit midpoint method is used to solve the semi-discrete modified
anomalous sub-diffusion equation with a nonlinear source term, and the weighted and
shifted Grünwald–Letnikov difference operator and the compact difference operator are
applied to approximate the Riemann–Liouville fractional derivative and space partial
derivative respectively, then the new numerical scheme is constructed. The stability and
the convergence of thismethod are analyzed. Numerical experiment demonstrates the high
accuracy of this method and confirm our theoretical results.
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1. Introduction

There has been increasing interest in the description of many phenomenon and processes by means of equations
involving fractional derivatives over the last decades [1–8]. Among these applications, the anomalous sub-diffusion equation
has attracted considerable attention. Recently there are models that have been proposed to describe process that become
less anomalous as time progresses by the inclusion of a secondary fractional time derivative acting on a diffusion operator
with a nonlinear source term [9,10]
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where 0 < α, β < 1, A, B are positive constants, the symbol 0D
1−γ
t u(x, t) denotes the Riemann–Liouville fractional

derivative operator, which is defined by
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where Γ (·) is the gamma function, f (u, x, t) satisfies the Lipschitz condition with respect to u:

|f (u, x, t)− f (υ, x, t)| ≤ L|u − υ|, ∀u, υ

here L is Lipschitz constant.
Furthermore, we assume that the problem (1) has a unique sufficiently smooth exact solution u(x, t).
Much work have been done on developing numerical methods for solving the modified anomalous sub-diffusion

equation, see e.g. [11–16,9,17,10,18–20]. However the numerical methods and their numerical analysis are still too little
for solving problem with a nonlinear source term (1). Liu et al. [10] proposed an implicit difference method, and proved
the stability and convergence using the energy method, and the convergence order of the method is O(τ + h2). Liu
et al. [9] proposed a semi-discrete approximation and a full discrete finite element approximation, and proved the stability
and convergence of the proposed methods. Mohebbi et al. [18] obtain fully discrete implicit scheme by applying the
Grünwald–Letnikov and the compact difference operator to discrete Riemann–Liouville fractional derivative and space
partial derivative respectively, and proved that the compact difference scheme is unconditionally stable and convergent by
Fourier analysis. The convergence order of the method is O(τ + h4). Li et al. [17] proposed a numerical method which used
the weighted and shifted Grünwald–Letnikov difference operator and the compact difference operator to approximate the
Riemann–Liouville fractional derivative and the space partial derivative respectively, and used the second order backward
difference formula to solve the semi-discrete system obtained by discretizing space variable. The convergence order of the
method is shown to be O(τ 2 + h4). This method have higher accuracy on time variable. But the implementation of the
algorithms needs two initial starting information. Beside a given initial value, another starting information needs to compute
by other numerical method. So it may affect the accuracy of the algorithm. The objective of this paper is to try to use the
implicit midpoint formula to achieve a new numerical method with high accuracy.

The outline of this paper is as follows. In Section 2, the numerical method for the modified anomalous sub-diffusion
equation is given. Then, in Section 3, stability and convergence analysis are discussed, respectively. Section 4 is used to
present numerical results, comparing the fixed stepsize implementation on a test problem. Numerical experiment shows
that the proposed method has high accuracy and efficiency for solving the modified anomalous sub-diffusion equation.

2. Numerical method

In this paper, we assume that u(x, t) ∈ U(Ω), where

U(Ω) =


u(x, t) |

∂6u(x, t)
∂x6

,
∂3u(x, t)
∂x2∂t

,
∂3u(x, t)
∂t3

∈ C(Ω)

,

whereasΩ = {(x, t)|0 ≤ x ≤ S, 0 ≤ t ≤ T }.
For the space interval [0, S] and time interval [0, T ], we choose the grid points as follows xj = jh, j = 0, 1, . . . ,M, tn =

nτ , n = 0, 1, . . . ,N , where h =
S
M denotes spatial step size, τ =

T
N denotes time stepsize. The exact solution and numerical

solution at the point (xj, tn) are denoted by u(xj, tn) and un
j respectively.

Lemma 2.1 ([21]). If u(x, t) ∈ U(Ω), then
1 +

1
12
δ2x


∂2u(xj, tn)
∂x2

=
δ2xu(xj, tn)

h2
+ O(h4) (2)

where δ2xu(xj, tn) = u(xj−1, tn)− 2u(xj, tn)+ u(xj+1, tn).

Lemma 2.2 ([22,20]). Let x be a grid point, u(x, t) ∈ L1(R), −∞Dα+2
t u(x, t) and its Fourier transform belong to L1(R), and define

the weighted and shifted Grünwald–Letnikov difference operator by

Dατ,p,qu(x, t) =
α − 2q
2(p − q)

Aατ,pu(x, t)+
2p − α

2(p − q)
Aατ,qu(x, t),

then we have

Dατ,p,qu(x, t) = −∞Dαt u(x, t)+ O(τ 2), t ∈ R,

where p, q are integers and p ≠ q, Aατ,ru(x, t) is the Grünwald–Letnikov approximation to the Riemann–Liouville fractional
derivative on variable t by

Aατ,ru(x, t) = τ−α
∞
k=0

g(α)k u(x, t − (k − r)τ ), r = p, q,



Download English Version:

https://daneshyari.com/en/article/5776422

Download Persian Version:

https://daneshyari.com/article/5776422

Daneshyari.com

https://daneshyari.com/en/article/5776422
https://daneshyari.com/article/5776422
https://daneshyari.com

