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a b s t r a c t

The Maxwell–Klein–Gordon equation describes the interaction of a charged particle with
an electromagnetic field. Solving this equation in the non-relativistic limit regime, i.e. the
speed of light c formally tending to infinity, is numerically very delicate as the solution
becomes highly-oscillatory in time. In order to resolve the oscillations, standard numerical
time integration schemes require severe time step restrictions depending on the large
parameter c2.

The idea to overcome this numerical challenge is to filter out the high frequencies
explicitly by asymptotically expanding the exact solution with respect to the small
parameter c−2. This allows us to reduce the highly-oscillatory problem to its corresponding
non-oscillatory Schrödinger–Poisson limit system. On the basis of this expansion we are
then able to construct efficient numerical time integration schemes, which do NOT suffer
from any c-dependent time step restriction.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Maxwell–Klein–Gordon (MKG) equation describes the motion of a charged particle in an electromagnetic field and
the interactions between the field and the particle. The MKG equation can be derived from the linear Klein–Gordon (KG)
equation

∂t

c

2

z − ∇
2z + c2z = 0 (1)

by coupling the scalar field z(t, x) ∈ C to the electromagnetic field via a so-calledminimal substitution (cf. [1–3]), i.e.

∂t

c
→

∂t

c
+ i

Φ

c
=: D0,

∇ → ∇ − i
A

c
=: Dα,

(2)

where the electromagnetic field is represented by the real Maxwell potentialsΦ(t, x) ∈ R and A(t, x) ∈ Rd.
We replace the operators ∂t

c and ∇ in the KG equation (1) by their minimal substitution (2) such that in the so-called
Coulomb gauge (cf. [4]), i.e. under the constraint divA ≡ 0, we obtain a KG equation coupled to the electromagnetic
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field as

∂t

c
+ i

Φ

c

2

z −


∇ − i

A

c

2

z + c2z = 0,

∂ttA − c21A = cP [J ] ,
−1Φ = ρ,

(3)

for some charge density ρ(t, x) ∈ R and some current density J(t, x) ∈ Rd, where we define

P [J ] := J − ∇∆−1 div J

the projection of J onto its divergence-free part, i.e. divP [J ] ≡ 0.
Setting

ρ = ρ[z] := − Re

i
z
c


∂t

c
− i

Φ

c


z

, J = J [z] := Re


iz


∇ + i
A

c


z

, (4)

where z solves (3), we find that ρ and J satisfy the continuity equation

∂tρ + div J = 0. (5)

For notational simplicity in the following we may also write ρ(t, x), J(t, x) instead of ρ[z(t, x)] and J [z(t, x)].
The definition of ρ and J in (4) together with the constraint divA(t, x) ≡ 0 yields the so-called Maxwell–Klein–Gordon

equation in the Coulomb gauge

∂ttz = −c2(−∆+ c2)z + Φ2z − 2iΦ∂tz − iz∂tΦ − 2icA · ∇z − |A|
2 z,

∂ttA = c21A + cP [J ] , J = Re

izDαz


,

−1Φ = ρ, ρ = −c−1 Re

izD0z


,

z(0, x) = ϕ(x), D0z(0, x) =


−∆+ c2ψ(x),

A(0, x) = A(x), ∂tA(0, x) = cA′(x),

(a)


Td
ρ(0, x)dx = 0,


Td
Φ(t, x)dx = 0. (b)

(6)

Note that for practical implementation issues we assume periodic boundary conditions (p.b.c.) in space in the above model,
i.e. x ∈ Td. For simplicity we also assume that the total charge Q (t) := (2π)−d


Td ρ(t, x)dx at time t = 0 is zero, i.e.

Q (0) = 0. Also due to the constraint divA(t, x) ≡ 0 we assume that the initial data A, A′ for A are divergence-free. Finally,
the following assumption guarantees strongly well-prepared initial data. However, approximation results also hold true
under weaker initial assumptions, see for instance [5].

Assumption 1. The initial data ϕ,ψ, A, A′ are independent of c.

Remark 1. Note that the continuity equation (5) together with the initial assumption Q (0) = 0 implies that for all t we
have


Td ρ(t, x)dx =


Td ρ(0, x)dx = 0. This yields the first condition in (6b).

Remark 2. Up to minor changes, all the results of this paper remain valid for Dirichlet boundary conditions instead of
periodic boundary conditions.

Remark 3. Note that the MKG system (6) is invariant under the gauge transform (z,Φ,A) → (z ′,Φ ′,A′), where for a
suitable choice of χ = χ(t, x)we set

Φ ′
:= Φ + ∂tχ, A′

:= A − c∇χ, z ′
:= z exp(−iχ),

i.e. if (z,Φ,A) solves the MKG system (6) then also does (z ′,Φ ′,A′) without modification of the system (cf. [4,2,3,6]).
Henceforth, the second condition in (6b) holds without loss of generality: If 0 ≠ (2π)−d


Td Φ(t, x)dx =: M(t) ∈ R, we

choose χ as χ(t, x) = χ(t) = −(M(0)+
 t
0 M(τ )dτ), such that (6b) is satisfied forΦ ′.

For more physical details on the derivation of the MKG equation, on Maxwell’s potentials, gauge theory formalisms and
many more related topics we refer to [4,7,1–3,6] and the references therein.

Here we are interested in the so-called non-relativistic limit regime c ≫ 1 of the MKG system (6). In this regime the
numerical time integration becomes severely challenging due to the highly-oscillatory behaviour of the solution. In order
to resolve these high oscillations standard numerical schemes require severe time step restrictions depending on the large
parameter c2, which leads to a huge computational effort. This numerical challenge has lately been extensively studied for
the nonlinear Klein–Gordon (KG) equation, see [8–11]. In particular it was pointed out that a Gautschi-type exponential
integrator only allows convergence under the constraint that the time step size is of order O(c−2) (cf. [9]).
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