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a b s t r a c t

Modeling of scientific or engineering applications often yields high-dimensional dynamical
systems due to techniques of computer-aided-design, for example. Thus a model order
reduction is required to decrease the dimensionality and to enable an efficient numerical
simulation. In addition,methods of parameterizedmodel order reduction (pMOR) are often
used to preserve the physical or geometric parameters as independent variables in the
reduced order models. We consider linear dynamical systems in the form of ordinary
differential equations. In the domain of the parameters, often samples are chosen to
construct a reduced order model. For each sample point a common technique for model
order reduction can be applied to compute a local basis. Moment matching or balanced
truncation are feasible, for example. A global basis for pMOR can be constructed from
the local bases by a singular value decomposition. We investigate approaches for an
appropriate selection of a finite set of samples. The transfer function of the dynamical
system is examined in the frequency domain, and our focus is on moment matching
techniques using the Arnoldi procedure. We use a sensitivity analysis of the transfer
functionwith respect to the parameters as a tool to select sample points. Simulation results
are shown for two examples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In science and engineering, mathematical models are generated automatically, which causes the drawback that
dynamical systems often exhibit a huge dimension. For an efficient numerical simulation, a model order reduction (MOR)
is required to reduce the complexity of the problem. Hence MOR represents an important field in scientific computing, see
[1,2], for example. Inmost of the cases, a lower dimensional dynamical system is derived, whose output should approximate
the quantities of interest sufficiently accurately.

The dynamical systems include parameters like physical parameters, geometrical parameters or others. In several
applications, a parameterized model order reduction (pMOR) is desired, where the parameters are preserved in the
reduction such that a single reduced order model can be evaluated directly for all relevant parameter values, see [3]. Firstly,
optimization problems require to evaluate the same model many times. Secondly, uncertainty quantification can be done
by an examination of the system for a large number of samples from uncertain parameters.

In pMOR for linear dynamical systems, typically local bases are determined for a finite set of parameter samples. Now
two different strategies exist. Firstly, the local bases are used to construct a global basis, where often a singular value
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decomposition is applied to the collection of all local bases. This global basis directly yields a reduced order model for
an arbitrary parameter value. This technique was employed for pMOR in [4,5], for example. Secondly, approaches from
nonlinear MOR can be generalized to the pMOR setting. In the trajectory piecewise linear technique, see [6,7], even though
a global basis is constructed, a weighted sum of terms from several linearization points is derived. In pMOR, a weighted sum
of several local bases for the different parameter samples can be arranged. This approach was investigated already in [8].

We consider pMOR for linear dynamical systems in this work. The first strategy above is applied to construct a single
reduced order model for all parameter values. We investigate approaches for choosing the parameter samples where local
bases are computed. This is done using global sensitivity analysis with the total effect sensitivity indices which can be found
in [9,10]. This sensitivity analysis was applied to the transfer function of a linear dynamical systemwith random parameters
in [11], where anMORwas derived inside the random space and thus pMORwas not considered.We now apply this concept
to identify the parameters in pMOR which have the main impact on the quantities of interest in the dynamical system.
Based on this information, the parameter points for the construction of the local bases are selected. An advantage is that this
selection depends on information from the problem at hand, where the aim is to obtain an efficient pMOR. A substantial
part of the paper consists of the presentation of numerical experiments applying the sensitivity analysis. We show results
for two test examples, namely the heat transfer in a microthruster unit, see [12], and the two-dimensional heat equation on
a square.

2. Problem setup

Let a dynamical system with P parameters µ = (µ1, . . . , µP) ∈ Π ⊂ RP be of the form

C(µ) ẋ(t, µ) = G(µ) x(t, µ) + B(µ) u(t)
y(t, µ) = L(µ) x(t, µ),

(1)

which is linear in state. The state-vector is denoted by x(t, µ) ∈ RN , whereas u(t) ∈ RM and y(t, µ) ∈ RK represent the M
inputs and the K outputs (quantities of interest), respectively, in the underlyingmodel. We call the sizeN of the state-vector
the dimension of the parametric model (1). The system matrices C(µ),G(µ) ∈ RN×N , B(µ) ∈ RN×M and L(µ) ∈ RK×N are
parameter-dependent. We assume that the matrices C(µ) are regular and that the system (1) is asymptotically stable for
each µ ∈ Π , meaning that all eigenvalues of C(µ)−1 G(µ) have negative real parts (see [13,3]). The parameter domain Π

is usually bounded, for example, a compact cuboid. The dimension of the dynamical system is commonly very large, and
consequently simulations for many different parameter values or varying input functions may become too expensive.

The aim of parametric model reduction is to find a dynamical system

Cred(µ) ż(t, µ) = Gred(µ) z(t, µ) + Bred(µ) u(t)
yred(t, µ) = Lred(µ) z(t, µ)

(2)

of dimension n ≪ N with yred(t, µ) ≈ y(t, µ) for all t ≥ 0, all p ∈ Π and a broad class of inputs u. This means finding a
dynamical systemofmuch lower dimensionwhich has a similar input–output-behavior as the original system and preserves
the parameter dependency.

To study the input–output-behavior of a linear dynamical systemwe consider the transfer function of (1) in the frequency
domain, cf. [13] for the non-parametric case,

H(s, µ) := L(µ) (s C(µ) − G(µ))−1 B(µ) ∈ CK×M ,

where s ∈ S(µ) ⊆ C with S(µ) := {s ∈ C : det(s C(µ) − G(µ)) ≠ 0}.
The aim of our parametric model reduction is to find a system of the form (2) with

Hred(s, µ) ≈ H(s, µ)

for all parameter values µ ∈ Π and a broad range of frequency points s ∈ C, where Hred denotes the transfer function of
the reduced system (2). We may achieve this approximation by using two (global) projection matrices V ,W ∈ CN×n and
the projected matrices

Cred(µ) = WHC(µ)V , Gred(µ) = WHG(µ)V ,

Bred(µ) = WHB(µ), Lred(µ) = L(µ)V .
(3)

Unfortunately, appropriate matrices V and W cannot be computed directly for all parameter values at once. To obtain
matrices V and W that apply well for a range of parameters methods for reduced order models of non-parametric systems
are needed.

3. Methods for model order reduction

In this section, we briefly review approaches to compute reduced order models of non-parametric systems. These
techniques will be used within a pMOR to build the global projection matrices V and W for the projections (3).
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